
An Application-Attuned Framework for Optimizing
HPC Storage Systems

Arnab Kumar Paul

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Ali R. Butt, Chair
Ian Foster

Dongyoon Lee
Eli Tilevich
Gang Wang

July 28, 2020
Blacksburg, Virginia

Keywords: Parallel File Systems, Object-Based Storage, Data Management, Load
Balancing, File System Indexing, Metadata Management, High Performance Computing

Copyright 2020, Arnab Kumar Paul

An Application-Attuned Framework for Optimizing
HPC Storage Systems

Arnab Kumar Paul

(ABSTRACT)

High performance computing (HPC) is routinely employed in diverse domains such as life
sciences, and Geology, to simulate and understand the behavior of complex phenomena. Big
data driven scientific simulations are resource intensive and require both computing and I/O
capabilities at scale. There is a crucial need for revisiting the HPC I/O subsystem to better
optimize for and manage the increased pressure on the underlying storage systems from big
data processing. Extant HPC storage systems are designed and tuned for a specific set of
applications targeting a range of workload characteristics, but they lack the flexibility in
adapting to the ever-changing application behaviors. The complex nature of modern HPC
storage systems along with the ever-changing application behaviors present unique opportu-
nities and engineering challenges.

In this dissertation, we design and develop a framework for optimizing HPC storage sys-
tems by making them application-attuned. We select three different kinds of HPC storage
systems – in-memory data analytics frameworks, parallel file systems and object storage. We
first analyze the HPC application I/O behavior by studying real-world I/O traces. Next we
optimize parallelism for applications running in-memory, then we design data management
techniques for HPC storage systems, and finally focus on low-level I/O load balance for im-
proving the efficiency of modern HPC storage systems.

In the first part of this dissertation (Chapter 3), we focus on collecting and studying file
system statistics from two Livermore Computing systems with 15 PiB Lustre file systems
at Lawrence Livermore National Laboratory. We add to the state-of-the art in I/O under-
standing by providing insight into how general HPC workloads affect the performance of
large-scale HPC storage systems. In the second part of this dissertation (Chapter 4), we
enable dynamic partitioning approach to improve task parallelism for in-memory data ana-
lytics frameworks. The third part of this dissertation (Chapter 5 and Chapter 6) proposes
scalable and novel techniques for data management in HPC storage systems. We design and
develop a generalized and scalable storage system monitor FSMonitor (Chapter 5) for cap-
turing and reporting events on heterogeneous large-scale storage systems. Furthermore, we
propose a metadata indexing and search tool Brindexer (Chapter 6) specifically designed
for large-scale HPC storage systems. Brindexer is mainly designed for system administra-
tors to help them manage the file system effectively. In the fourth part of this dissertation
(Chapter 7), we use all the findings and tools from the previous parts to develop an “end-
to-end control plane” that leverages real time load information for distributed storage server
global data placement while our design model leverages trace-based optimization techniques
to minimize I/O load request latency between clients and servers.

An Application-Attuned Framework for Optimizing
HPC Storage Systems

Arnab Kumar Paul

(GENERAL AUDIENCE ABSTRACT)

Clusters of multiple computers connected through internet are often deployed in industry
and laboratories for large scale data processing or computation that cannot be handled by
standalone computers. In such a cluster, resources such as CPU, memory, disks are integrated
to work together. With the increase in popularity of applications that read and write a
tremendous amount of data, we need a large number of disks that can interact effectively in
such clusters. This forms the part of high performance computing (HPC) storage systems.
Such HPC storage systems are used by a diverse set of applications coming from organizations
from a vast range of domains from earth sciences, financial services, telecommunication to
life sciences. Therefore, the HPC storage system should be efficient to perform well for the
different read and write (I/O) requirements from all the different sets of applications. But
current HPC storage systems do not cater to the varied I/O requirements. To this end, this
dissertation designs and develops a framework for HPC storage systems that is application-
attuned and thus provides much improved performance than other state-of-the-art HPC
storage systems without such optimizations.

Dedicated to my family - Ma, Baba, Mann, Didi, Tun da, Jhilik, and Aarush; and to my
friends who have become a part of my life, for their support, encouragement, motivation,

and love.

iv

Acknowledgments

This dissertation would not have been possible without the support of many people who have
become an integral part of my life. I would like to take this time to express my gratitude to
these awesome individuals.

My journey in the path of Computer Science started when I was in the eighth standard
when my first computer came to our house. Didi was the one who first inspired me to write
computer codes to solve complex problems. I also owe my interest in Computer Science
hugely to Geeta ma’am and Rama Rao Sir, who were the ones to instill in me the confidence
of coding and digital logic right throughout my high school days.

During my B.Tech. days at Netaji Subhash Engineering College, I am thankful to the entire
CSE faculty, especially, Anupam Sir and Pritwish Sir, who taught me the fundamentals of
Operating System and Computer Hardware, which form the base of my Ph.D. dissertation.
My life’s journey would not have turned towards higher studies without the support of my
roommates and friends during B.Tech. - Soumya, Sabya Da, Debu Da, Koontal Da, Golu,
Subroto Da, Pritam, Krishna, Bikram, Arijit, Prithwish, Priyankar, Arka, Arjun, Pratip,
Banu, Asif, Samik, Nandu, Manashi, Lopa, Such, Nimi, Animesh, Arunava, Kathi, Raj,
Arindam, Aritra, Rahul Roy, Chandrani, Moulik, and Madhu.

Next, during my M.Tech. at National Institute of Technology Rourkela, I met so many
awesome individuals who shaped my life and prepared me further for my Ph.D. Firstly, spe-
cial thanks to Bibhu Sir, Rath Sir, and Mohapatra Sir for letting me work on a M.Tech.
topic that was outside my specialization area but would lead me to pursue Ph.D. on that
topic. They were the ones who wrote recommendation letters and motivated me to pursue
my Ph.D. in the U.S.. My roommates and classmates at NIT Rourkela have been the best.
Ravikant - I miss you a lot mere bhai! Koshy, Akshay, Sandeep, Soham, Sumanta, Rajgopal,
Aditi, Sai, and Hareesh, you all have given me the best moments to cherish throughout my
life.

My Ph.D. journey at Virginia Tech could not have gone smoother without the support
and encouragement of my advisor, Dr. Ali R. Butt. He has been a mentor, and an elder
brother to me during the course of my Ph.D.. The freedom that he gave me during my

v

Ph.D. to pursue my research ideas, mentor students, teach classes, and brainstorm ideas for
proposals has given me the much needed boost for my entire career. He has also showed me
how to balance family and work, being successful at both. I am also thankful to Dr. Eli
Tilevich who gave me life and Ph.D. lessons during our ping-pong sessions, sometimes even
late at night in CRC. I have also been inspired by the rigorous hard work that my committee
members, Dr. Dongyoon Lee and Dr. Gang Wang, put in day and night to excel in their
respective research areas.

I would also like to take this opportunity to thank Dr. Wu Feng who was my first point of
contact at Virginia Tech. Thanks are in order for my labmates: Kwang, Umar - my sav-
ior, Jay, Safdar and Anwar - my mentors, Bharti, Kevin, Sangeetha, Arpit, Salman, Luna,
Hadeel, Nannan, Redwan, Debasmita, Jingoo, Hyogi, Arjun, Jamaal, and Michael. The in-
teractions, collaborations, and lengthy discussions about research projects and life in general
with my labmates really enriched my Ph.D. experience. DSSL rocks! Subil - In addition to
being an awesome labmate, we also collaborated on research. I hope we continue our rela-
tionship even in ORNL. Breno - For the past two years we have served as the punching bag
for each other’s stress in the ping-pong room. I hope we can have many more collaborations
in the near future.

I am extremely thankful to the wonderful staff in the Computer Science department at
Virginia Tech. Special mention needs to be given to Sharon, who has helped me numerous
number of times and the special bond that we have created over the years. Teresa - without
you none of my conference travels would have been possible. Melanie and Robert - thank
you for taking care of us whenever it was needed, and finally the tech staff, for being there
always whenever I needed technical assistance for managing our lab’s cluster. Thanks are
also in order for the graduate school. Thank you for being there whenever I needed help
with immigration documents and procedures in the graduate school.

My Ph.D. career has been majorly marked by the three summer internships that I have
done. Firstly, thank you Dr. Foster, Ryan and Kyle for giving me an opportunity to work
in Argonne National Laboratory in the summer of 2017. It was my first ever internship and
the experience I gained from it was tremendous. The cricket sessions, meetings in Globus by
the river, or the sessions in UChicago with Tyler, Yulie, Logan, Yadu, and Hong, everything
was a joy. Thanks to Subhajit for providing me a home where I had wonderful roommates
- Imran, Rushit, Arjun, Ojasvee, and Nehal.
Next summer in 2018, at Lawrence Livermore National Laboratory, I had a group of the
most awesome mentors - Dr. Kathryn Mohror, along with Elsa and Olaf, who provided me
an excellent knowledge base of large scale HPC storage systems, which form the core of my
dissertation. I met a wonderful, intelligent group of people at the lab with whom I had deep
technical discussions, and also ping-pong and board game challenges. Thank you Clayton
for being an awesome roommate, and special thanks to Joanna and Teresa for providing me
a home for the summer. I also ran my first half marathon in Livermore, wonderful memo-

vi

ries! I would like to acknowledge Aniket, Anirudh, Dung, Eric, Erin, Goutham, Irene, Jesse,
Mahta, Kaushik, Kenneth, Nawrin, Sayket, Tao, Yue, and Zach for giving me the perfect
partnership to explore California.
The summer in 2019 was one of the best summer internships that I have ever had. First
of all thanks to Dr. Jay Lofstead who has always been my mentor throughout my Ph.D..
He introduced me to the people at Cray during one of the dinner parties at SC 2018. The
interactions I had with Charlie Carroll - the VP of storage at Cray, provided me a unique
opportunity to intern at Cray in the summer of 2019. Thank you Peter, Nathan, Cory
and Brian for mentoring me with the industry aspects of how HPC storage works, and to
Scott, Dr. Brad Settlemeyer, and Dominic for providing me insights of storage aspects at Los
Alamos National Laboratory. My summer would not have been half as enjoyable without my
awesome hosts in Los Alamos - Paul and Jill, who have become a family to me. Grandma,
Connor, Courtney, and Patrick have become like my extended family now. The community
at Los Alamos gave me a feeling of home away from home. Thank you Ayan da, Suranjana
di, Dibya da, Soumya da, Subhashish, Pranay, Trideep, Santanu da, Supratim da, and the
entire cricket gang in Los Alamos. It was a wonderful time.

My family at Blacksburg! Where do I even start. The countless memories that will be
more than enough to live with in this lifetime. Thank you Anamitra da and Paroma di for
being patient with me during my first year in the U.S.. Nob - one of the best persuaders
in the history of ...! Prasen da - thank you for coming to Blacksburg and choosing me as
your roommate. I will never ever forget the life lessons that you have given me. Ranit -
your witty comments have developed a better version of me over the years. Arit - you are
one of the most childish (sometimes mature) and the sweetest roommate I have ever had.
GB - our friendship has only grown stronger day by day. Sreeya di - thank you being an
elder sister and taking care of us. Shuchi - one of the most creative persons I have met,
give her any object and she will breathe life into it. Gablu da, Shreya di - I have never
missed my elder sister and brother-in-law in Blacksburg because you were there. I will miss
Gugli a lot. Anindo, Debbie - continue being awesome! Arnab da, Poorna di - thank you
providing me the guidance whenever I needed it. Srijan da, Swarnali di - you entered late
into the Blacksburg chapter but have left a profound impact on the memories that I have
during my Ph.D.. Lekha - without you many memories in Blacksburg would be incomplete.
Keep shining! Esha - you showed how friendship can only keep on getting stronger with
every passing day. Nath - you are an awesome individual and I hope you continue to suc-
ceed further. Deba - I hope we cherish our friendship like you cherish your vehicles. Meyur
- thank you for inspiring me to continue long-distance running. Subhradeep da, Debarati
di - thank you for caring me like your little brother during my initial years in Blacksburg.
Thanks to my hiking friends - Khushboo, Nishtha, Sandeep, Sai, Srivats, Abhinav, Shyam,
and Anirudh. I also thank my cultural brigade in Blacksburg - Donu da, Bala, Megha, Yash,
Sheemantini, Poorvi, and Saikat. Thanks to all the people who have become very close to
my heart over the years - Sagnik da, Ritwam, Leo, Anish, Fadikar da, Shibaji da, Atashi di,
Bipasha, Jamaal, Jamie, Nisaanth, Sayantan, and Wrik da. My acknowledgement cannot be

vii

complete without being grateful to my awesome cricket buddies in Blacksburg - Padhi, Jana,
Arka, Harsh, Appy, Anshul, Parag, Rahul, Swetank, Jaggu, Keshto da, Satyaki, Abhinaba
da, Abhishek, Mihir, Aman, Dibyendu da, Manik, Somya, and Kartik. Special mention to
the Bangladesh community in Blacksburg for lighting up a Bengali spirit that was hidden in
me - Yasin, Toyon, Anamul, Mahbub, Sajal da, and Sazzad. I am also extremely thankful
to AID - Blacksburg for providing me a much needed platform to exercise my societal duties.

Last but not least, the most important people that I owe my entire Ph.D. to is my fam-
ily. Ma, baba I know how much you both have struggled to let me dream big and follow
my ambitions. You are one of the strongest people I have met and I just pray that I can
be emotionally at least half as strong in my life as you are. Mann - thank you for coming
to my life. In this dissertation, the technical writing is mine but the emotional writing is
yours. You have kept me sane and provided me with much more emotional support than a
person can ever crave for. I promise that I will try to make up for all the years of us staying
apart. I love you and thank you for always being there. Didi, Tun da - thank you for always
removing whatever obstacles have come in my journey. I could be brave in my decisions
knowing that you always have my back. Jhilik and Aarush - I am as proud a Mama can
ever be. You both are the joy in my life.

Funding Acknowledgment My research was supported by National Science Foundation
(CNS-1615411, CNS-1565314/1838271, CCF-0746832, CNS-1016408, CNS-1016793, OAC
1835890, CCF-1919113, CNS-1405697 and CNS-1422788), CS at Virginia Tech, Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357, research credits provided by Amazon Web Services,
resources of the Oak Ridge Leadership Computing Facility, located in the National Center
for Computational Sciences at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the DOE under Contract DE-AC05-00OR22725, and auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Many thanks to all for making this dissertation possible.

Declaration of Collaboration In addition to my advisor Ali R. Butt, this dissertation
has benefited from many collaborators, especially:

• Kathryn Mohror, Elsa Gonsiorowski, Olaf Faaland, and Adam Moody contributed
to the I/O analysis from the traces in Lawrence Livermore National Laboratory in
Chapter 3 of this dissertation, and have been part of multiple joint papers [154, 155,
157].

• Wenjie Zhuang, Luna Xu, Min Li, and M. Mustafa Rafique contributed to the opti-
mization in in-memory data analytics in Chapter 4.

• Ryan Chard, Kyle Chard, Ian Foster, and Steven Tuecke contributed to the develop-
ment of the file system monitor in Chapter 5, and have been part of multiple joint

viii

papers [152, 153, 156].

• Brian Wang, Nathan Rutman, and Cory Spitz contributed to the design of a metadata
indexer in Chapter 6.

• Bharti Wadhwa, Sarah Neuwirth, Feiyi Wang, and Sarp Oral contributed to the load
balancing work in Chapter 7, and have been part of multiple joint papers [151, 158, 196].

• Jon Bernard and Kirk W. Cameron have also contributed to the design of the load
balancer in the paper [196] which is part of the Chapter 7.

ix

Contents

List of Figures xv

List of Tables xviii

1 Introduction 1

1.1 Motivation . 2

1.2 Application-Attuned HPC Storage Systems 3

1.2.1 Understanding HPC Application I/O Behavior Using System Level
Statistics . 3

1.2.2 Optimizing Data Partitioning for In-Memory Data Analytics Frameworks 4

1.2.3 File System Monitoring for Large Scale Storage Systems 5

1.2.4 Efficient Metadata Indexing for HPC Storage Systems 6

1.2.5 I/O Load Balancing for Big Data HPC Applications 6

1.3 Research Contributions . 7

1.4 Dissertation Organization . 9

2 Background 10

2.1 Analysis of I/O Behavior of HPC Workloads 10

2.2 Optimization in Big Data Processing Frameworks 12

2.3 Monitoring of Large Scale Storage Systems 12

2.4 Metadata Indexing in HPC Storage Systems 13

2.5 Load Management in HPC Storage Systems 14

x

3 Understanding HPC Application I/O Behavior Using System Level Statis-
tics 15

3.1 Introduction . 15

3.2 Background . 17

3.2.1 Lustre Parallel File System . 17

3.2.2 Clusters . 18

3.3 Data Collection . 18

3.3.1 Aggregate Job Statistics . 18

3.3.2 Time-Series Job Statistics . 19

3.4 Analysis . 20

3.4.1 Aggregate Job Statistics . 20

3.4.2 Time-Series Job Statistics . 28

3.5 Discussion . 33

3.5.1 Lessons for HPC admininistrators . 33

3.5.2 Lessons for HPC users . 33

3.6 Chapter Summary . 34

4 Optimizing Data Partitioning for In-Memory Data Analytics Frameworks 35

4.1 Introduction . 35

4.2 Background and Motivation . 37

4.2.1 Spark Data Partitioning . 37

4.2.2 Workload Study . 39

4.3 System Design . 41

4.3.1 Enable Auto-Partitioning . 42

4.3.2 Determine Stage-Level Partition Scheme 43

4.3.3 Globally-Optimized Partition Scheme 45

4.4 Evaluation . 47

4.4.1 Overall Performance of Chopper . 48

4.4.2 Timing Breakdown of Execution Stages 49

xi

4.4.3 Impact on Shuffle Stages . 50

4.4.4 Impact on System Utilization . 51

4.5 Chapter Summary . 52

5 File System Monitoring for Large Scale Storage Systems 54

5.1 Introduction . 54

5.2 Background . 55

5.2.1 Parallel File System . 56

5.2.2 Object Storage . 57

5.2.3 Monitoring Storage System Events 59

5.2.4 Prior Work . 61

5.3 FSMonitor System Design . 62

5.3.1 Logical View of FSMonitor . 62

5.3.2 Storage System View of FSMonitor 64

5.4 Evaluation . 68

5.4.1 Experimental Setup . 68

5.4.2 Experiment Workloads . 69

5.4.3 Evaluating FSMonitor Using Synthetic Benchmark 70

5.4.4 Evaluating FSMonitor Using Metadata Benchmarks 74

5.4.5 Evaluating FSMonitor Using Data Benchmarks 75

5.5 An Illustrative Application Use Case . 76

5.6 Chapter Summary . 78

6 Efficient Metadata Indexing for HPC Storage Systems 79

6.1 Introduction . 79

6.2 Background & Motivation . 81

6.2.1 Partitioning Techniques . 81

6.2.2 Metadata Attributes . 82

6.2.3 HPC Storage System . 83

xii

6.2.4 Collecting Metadata Changes . 84

6.3 System Design . 87

6.3.1 Indexer . 87

6.3.2 Re-Indexer . 89

6.3.3 Metadata Query Interface . 91

6.4 Evaluation . 91

6.4.1 Experimental Setup . 92

6.4.2 Workloads . 92

6.4.3 Comparison of System Calls . 93

6.4.4 Evaluation of Indexer . 94

6.4.5 Evaluation of Metadata Query Interface 95

6.4.6 Evaluation of Re-Indexer . 97

6.5 Chapter Summary . 98

7 I/O Load Balancing for Big Data HPC Applications 100

7.1 Introduction . 100

7.2 Background and Motivation . 102

7.2.1 Progressive File Layout . 102

7.2.2 I/O Performance Statistics . 103

7.2.3 The Need for Load Balancing . 103

7.3 System Design . 105

7.3.1 Parallel File Access Modes for Varying Striping Layouts 106

7.3.2 Client-Side Components . 107

7.3.3 Server-Side Components . 113

7.4 Evaluation . 116

7.4.1 Methodology . 116

7.4.2 Comparison of Load Balancing Approaches 117

7.4.3 Scalability Study . 119

7.5 Chapter Summary . 120

xiii

8 Conclusion and Future Work 121

8.1 Summary . 121

8.2 Future Directions . 123

8.2.1 ML for I/O and I/O for ML . 123

8.2.2 Edge Computing and Federated Learning 124

8.2.3 Containers in HPC . 124

Bibliography 125

xiv

List of Figures

3.1 An overview of Lustre architecture. 17

3.2 Read and write percentage of users on Cab and Quartz. 22

3.3 Cumulative Distribution Function for Duration and #Nodes in Cab and Quartz. 22

3.4 Relationship between Write Bytes and Metadata operations for Jobs in Cab
and Quartz. 25

3.5 #File opens and close handled by different MDTs 26

3.6 I/O Heat Map for 2017 per day and per day of the week in Cab and Quartz. 26

3.7 Contribution of Job with Maximum Duration on I/O for a day and a day of
the week in 2017. 27

3.8 Contribution of User doing maximum I/O (highest read/write bytes) with
respect to total I/O on the system in 2017 on a day and a day of the week’s
I/O. 28

3.9 Percent minutes 11,425 jobs performed any I/O. 28

3.10 Percent minutes 10,443 jobs performed at least one write. 29

3.11 Write Bytes written over time by 3 random jobs in Quartz. 29

3.12 % I/O duration vs. write burst size as % of memory. 31

3.13 Percent I/O duration vs vs size of write bursts. 31

3.14 Plotting I/O behavior of application for every hour throughout the day. . . . 32

4.1 Overview of Spark DAGScheduler. 38

4.2 Execution time per stage under different number of partitions. 39

4.3 Execution time of stage 0 under different partition numbers. 40

4.4 Shuffle data per stage under different partition numbers. 40

xv

4.5 System architecture of Chopper. 41

4.6 An example generated Spark workload configuration in Chopper. 42

4.7 Execution time of Spark and Chopper. 48

4.8 Execution time per stage breakdown of KMeans. 49

4.9 Shuffle data per stage for SQL. 50

4.10 Execution time per stage breakdown of SQL. 50

4.11 CPU utilization. 51

4.12 Memory utilization. 51

4.13 Total transmitted and received packets per second. 51

4.14 Transactions per second. 52

5.1 Comparison of block-based and object-based storage models. 57

5.2 An overview of Ceph architecture. 58

5.3 Robinhood architecture. 61

5.4 FSMonitor architecture, showing the interface, resolution, and DSI layers. . . 63

5.5 Infrastructural view of FSMonitor. On Lustre: Collectors=MDSs, Aggrega-
tor=MGS, Consumers=Lustre Clients. On Ceph: Collectors=MDSs, Aggre-
gator=Monitor, Consumers=Ceph Clients. 65

5.6 Performance of FSMonitor when running MDTest on Lustre (left) and Ceph
(right). 75

5.7 Performance of FSMonitor when running FS Mark on Lustre (left) and Ceph
(right). 75

5.8 Overall design of file system indexer using FSMonitor. 77

6.1 Comparison between hierarchical partitioning (left) and leveled partitioning
(right) approaches using the same file structure. 81

6.2 Overall architecture of Brindexer. 87

6.3 Parallelism in leveled partitioning (left) and 2-level database sharding (right)
of Brindexer. 88

6.4 Design of Re-Indexer in Brindexer. 89

6.5 Comparison of system call stack for indexing 1.2M files in hierarchical direc-
tory structure by Brindexer (left) and GUFI (right). 93

xvi

6.6 Time taken to index by Brindexer and GUFI. 94

6.7 CPU utilization by Brindexer and GUFI during indexing on Client (left)
and MDS (right). 95

6.8 Memory utilization by Brindexer and GUFI during indexing on Client (left)
and MDS (right). 95

6.9 Time taken to query by Brindexer, GUFI, lfs find, and Robinhood. 96

6.10 CPU utilization by Brindexer and GUFI during querying on Client (left)
and MDS (right). 97

6.11 Memory utilization by Brindexer and GUFI during indexing on Client (left)
and MDS (right). 97

7.1 An example PFL layout. 102

7.2 Max/Mean OST load over time (Round-Robin). 104

7.3 Max/Mean OSS load over time (Round-Robin). 104

7.4 Capacity of all OSTs over time (Round-Robin). 104

7.5 Overview of the proposed architecture. 105

7.6 Layout in FPP mode - 4 processes each writing 8GB in a non-PFL setup. . . 106

7.7 Layout in FPP mode - 4 processes each writing 8GB in a PFL setup. 106

7.8 Layout in SSF mode - 1 process creating a 32GB file in a non-PFL setup. . . 106

7.9 Layout in SSF mode - 1 process creating a 32GB file in a PFL setup. 106

7.10 Graph used in OST Allocation Algorithm. 115

7.11 Max/Mean OST load over time in simulated setup. 117

7.12 Max/Mean OSS load over time in simulated setup. 117

7.13 Max CPU% on MDS over 12 hours in real setup. 117

7.14 Capacity of all OSTs over time under MCMF in simulated setup. 118

7.15 Capacity of all OSTs over time under MCMF in real setup. 118

7.16 Execution time with increasing number of OSTs in simulated setup. 118

7.17 Performance with increasing number of OSTs in simulated setup: 160 OSTs
(20 OSS), 480 OSTs (60 OSS), 800 OSTs (100 OSS), 1024 OSTs (128 OSS)
and 3600 OSTs (450 OSS). 119

xvii

List of Tables

3.1 Cluster Configurations. 18

3.2 Overview of the Jobs run on Cab and Quartz. 21

3.3 Statistics for duration and nodes for all jobs. 23

3.4 Statistics for write bytes and write bytes per call for all jobs and users per-
forming I/O on Cab and Quartz. 24

4.1 Workloads and input data sizes. 48

4.2 Execution time for stage 0 in KMeans. 49

4.3 Repartition of stages using Chopper. 50

5.1 A sample Lustre ChangeLog record showing Create File, Modify, Rename,
Create Directory, and Delete File events. 59

5.2 A sample Ceph Journal record showing Create File, Modify, Rename, Create
Directory, and Delete File events. 60

5.3 Baseline Event Generation Rates. 71

5.4 Baseline Event Reporting Rates. 71

5.5 FSMonitor CPU Utilization. 73

5.6 FSMonitor Memory Utilization. 73

5.7 FSMonitor performance vs. cache size. 73

5.8 FSMonitor events for IOR and HACC-IO on Thor and Ceph. 76

5.9 Impact of running FSMonitor with HACC-IO. 76

5.10 Impact of running FSMonitor with IOR. 76

5.11 File system workload to evaluate re-indexer. 77

xviii

5.12 Time taken by indexer and re-indexer. 78

6.1 Metadata Attributes. 82

6.2 Some sample file management questions and the metadata search queries used. 83

6.3 A sample Lustre ChangeLog record showing Create File, Modify, Rename,
Create Directory, and Delete File events. 85

6.4 Number of file system events for each metadata event in a 24-hour Lustre
Changelog. 86

6.5 Workload 1: Flat directory structure: Smaller number of directories with
higher average number of files per directory. 92

6.6 Workload 2: Hierarchical directory structure: Large number of directories
with lower average number of files per directory. 92

6.7 Event Reporting Rates by Brindexer and Robinhood. 98

6.8 Brindexer performance and resource utilization vs. cache size. 98

7.1 List of I/O performance statistics for relevant system components. 103

7.2 Interaction database snapshot for IOR in FPP mode in PFL layout. 109

7.3 Interaction database snapshot for IOR in FPP mode in non-PFL layout. . . 111

7.4 Interaction database snapshot showing OST allocation for IOR in FPP mode
in PFL layout. 114

7.5 Interaction database snapshot showing OST allocation for IOR in FPP mode
in non-PFL layout. 114

xix

xx

Chapter 1

Introduction

High performance computing (HPC) storage systems are increasingly becoming important.
From life sciences and financial services to manufacturing and telecommunications, organiza-
tions are finding that they need not just more storage, but high-performance storage to meet
the demands of their data-intensive workloads. This has resulted in a massive amount of data
generation (order of petabytes), creation of billions of files, and thousands of users acting on
large-scale distributed high performance computing (HPC) storage systems. According to
a recent report from National Energy Research Scientific Computing Center (NERSC) [14],
over the past 10 years, the total volume of data stored at NERSC has grown at an annual
rate of 30 percent. This massive rate of data generation has resulted in an increasing need
for high performance distributed storage systems like Apache Spark [211, 212], Ceph [201],
GlusterFS [46], IBM Spectrum Scale [168] (formally known as GPFS) and Lustre [47].

The dependency on HPC storage systems has resulted in input-output (I/O) operations be-
coming the bottleneck for application performance. The current trend for high performance
computing (HPC) systems is that processor performance improves at a rate of 20% per year,
while disk access time improves by only 10% every year [85]. As a result, massively paral-
lel HPC applications can suffer from imbalance in computation and I/O performance, with
I/O operations becoming a limiting factor in application efficiency [105]. To mitigate this
problem, much effort is needed to implementing high performance parallel file systems to
support the I/O needs of HPC applications.

HPC storage systems are designed to distribute file data across multiple servers so that
multiple clients can access file system data in parallel. Typically, they consist of clients that
read or write data to the file system, data servers where data is stored, metadata servers
that manage the metadata and placement of data on the data servers, and networks to
connect these components. Data may be distributed (divided into stripes) across multiple
data servers to enable parallel reads and writes. This level of parallelism is transparent
to the clients, for whom it seems as though they are accessing a local file system. This
entire storage system stack (clients, metadata servers, and data servers) can be exploited to

1

2 Chapter 1. Introduction

optimize the performance of distributed storage systems.

1.1 Motivation

Several factors affect the I/O performance of big data HPC applications. First, the number
and kinds of applications that an HPC storage system supports is increasing rapidly [213],
which leads to increased resource contention and creation of hot spots where some data or
resources are consumed significantly more than others. Second, the underlying storage sys-
tems, e.g., Ceph [201], GlusterFS [46], and Lustre [47], are often distributed, and adopt a
hierarchical design comprising thousands of distributed components connected over complex
network topologies. Managing and extracting peak performance from such resources is non-
trivial. With changing application characteristics, static approaches (e.g., [68, 198]) are no
longer sufficient, necessitating dynamic solutions. Third, the storage components can develop
load imbalance across the I/O servers, which in turn impacts the performance and time to so-
lution for the big data problem. Moreover, big data science relies on sophisticated workflows
that encompass a wide variety of storage locations as data flows from instruments to process-
ing resources and archival storage. Each storage location may be completely independent
of one another, managed in separate administrative domains and providing heterogeneous
storage interfaces such as hierarchical POSIX stores, high-performance distributed storage,
persistent tape storage, and cloud-based object stores. Data may be stored for short to long
periods on each, be accessible to dynamic groups of collaborators, and be acted upon by
various actors. As data generation volumes and velocities continue to increase, the rate at
which files are created, modified, deleted, and acted upon (e.g., permission changes) make
manual oversight and management infeasible.

There is a plethora of application-specific parameters that impact runtime performance in
Apache Spark, such as tasks parallelism, data compression and executor resource configu-
ration. In typical data processing systems, the input (or intermediate) data is divided into
logical subsets, called partitions. Specifically, in Spark, a partition can not be divided be-
tween multiple compute nodes for execution, and each compute node in the cluster processes
one or more partitions. Moreover, a user can configure the number of partitions and how
the data should be partitioned (i.e., hash or range partitioning schemes) for each Spark job.
Sub-optimal task partitioning or selecting a non-optimal partition scheme can significantly
increase workload execution time. For instance, if a partition strategy launches too many
tasks within a computation phase, this would lead to CPU and memory resource contention,
and thus lose performance. Conversely, if too few tasks are launched, the system would have
low resource utilization and would again result in reduced performance.

Even though HPC parallel file systems such as Lustre provide much higher bandwidth and
reliability than other options, continual improvement of parallel file systems is needed to
reduce the impact of the increasing I/O performance bottleneck. File system designers need
a comprehensive understanding of the I/O workloads on current HPC systems so that they

1.2. Application-Attuned HPC Storage Systems 3

can design successful next-generation file systems. Additionally, HPC system designers and
system administrators need to understand both file system and application behavior so that
they can design and tune HPC systems to run as efficiently as possible. Traditionally, I/O
and storage analysis efforts have concentrated on analyzing application I/O behavior from
application-level statistics [88, 89, 97, 122, 139, 147, 169], and there have been significant
studies on the I/O workloads of large scale systems [50, 51, 52, 105, 123, 199, 200] which
identify potential I/O bottlenecks in applications and suggest improvements to HPC users.
However, while these studies can give clues about how particular applications utilize and
stress HPC file systems, they do not give true insight into storage system performance under
a general load. Thus, in order to draw meaningful conclusions about how to improve parallel
file system designs for all users of an HPC system, we need to analyze statistics captured
from the file system itself (from file system data on compute nodes and from data on servers
that manage the I/O requests from HPC applications) independently of user applications.

1.2 Application-Attuned HPC Storage Systems

To address the above issues, this dissertation proposes, designs, and implements an application-
attuned framework for optimizing HPC storage systems. This dissertation focuses on exploit-
ing the different layers in the storage stack of HPC storage systems, namely, the clients on
which applications are run, the metadata servers and the storage servers. The different HPC
storage systems which are optimized here are - Apache Spark, Lustre file system, and Ceph
object store. However, the approaches mentioned in this dissertation are applicable for any
hierarchical HPC storage system. A plethora of different kinds of applications are explored,
ranging from I/O intensive workloads to big data analytics workloads. The overarching goal
of this dissertation is to improve the efficiency and flexibility of HPC storage systems by mak-
ing them application-aware, and also improve the performance of applications by providing
a transparent interface for efficient interaction with the underlying storage infrastructure,
and making the storage software layer fully-aware of both the workload characteristics and
the underlying storage heterogeneity.

Next, we define the various optimizations performed in achieving an application-attuned
framework for the various HPC storage systems.

1.2.1 Understanding HPC Application I/O Behavior Using Sys-
tem Level Statistics

Analyzing HPC Application I/O behavior is a very important work to be done to understand
what kinds of optimizations to perform on HPC storage systems. Some of the earliest
studies of HPC file systems utilizing system statistics were in 2010 [175, 225]. These works
analyzed the deployment of Lustre file systems and lessons learned from them. However, to

4 Chapter 1. Introduction

the best of our knowledge, there have not been efforts which analyze file system statistics
in an application-agnostic manner to understand how to support a general HPC workload.
Lawrence Livermore National Laboratory (LLNL) is home to a variety of clusters that utilize
Lustre file systems as primary storage, and millions of jobs run on these systems. In this
effort, we take advantage of the Lustre resources at LLNL and perform a study of general
application behavior using file system statistics from Lustre.

In the first part of this dissertation, we collect and study file system statistics from two
Livermore Computing systems with 15 PiB Lustre file systems at LLNL, namely Quartz

and Cab1 [154, 155, 157]. We collect two types of data from these systems. - Aggregate
Job Statistics and Time-Series Job Statistics. We analyze these system statistics without
knowledge of the types of applications running on these systems with the goal of answering
questions like What are the typical I/O characteristics of I/O-heavy jobs?, How do I/O
operations of jobs affect the metadata server?, and How does the size of application output files
correlate with compute node memory size? Our study of application-agnostic I/O statistics
from the Lustre file system contributes to the state-of-the-art in I/O behavior understanding.
We provide insight into how general HPC workloads affect the performance of file systems,
which can aid system architects in improving file system and storage system designs and
system administrators in tuning existing systems and advising users of best practices. These
improvements will help to alleviate the I/O imbalance in HPC systems and increase the
overall efficiency of HPC applications.

1.2.2 Optimizing Data Partitioning for In-Memory Data Analyt-
ics Frameworks

Inferior partitioning can lead to serious data skew across tasks in Apache Spark, which would
eventually result in some tasks taking significantly longer time to complete than others. As
data processing frameworks usually employ a global barrier between computation phases, it
is critical to have all the tasks in the same phase finish approximately at the same time, so
as to avoid stragglers that can hold back otherwise fast-running tasks. The right scheme for
data partitioning is the key for extracting high performance from the underlying hardware
resources. However, finding a data partitioning scheme that gives the best or highest per-
formance is non-trivial. This is because, data analytic workflows typically involve complex
algorithms, e.g., machine learning and graph processing. Thus, the resulting task execution
plan can become extremely complicated with increasing number of multiple computation
phases. Moreover, given that each computation phase is different, the optimal number of
partitions for each phase can also be different, further complicating the problem.

In the second part of this dissertation, we propose Chopper [163], an auto-partitioning
system for Spark2 that automatically determines the optimal number of partitions for each

1Cab was decommissioned in June 2018.
2We use Spark as our evaluation DAG-based data processing framework to implement and showcase the

1.2. Application-Attuned HPC Storage Systems 5

computation phase during workload execution. Chopper alleviates the need for users to
manually tune their workloads to mitigate data skewness and sub-optimal task parallelism.
Our proposed dynamic data partitioning is challenging due to several reasons. First, since
Spark does not support changing tasks parallelism parameters for each computation phase,
Chopper would need to design a new interface to enable the envisioned dynamic tuning
of task parallelism. Second, the optimal data partitions differ across different computation
phases of workloads. Chopper needs to understand application characteristics that affect
the task parallelism in order to select an appropriate partitioning strategy. Finally, to adjust
the number of tasks, Chopper may introduce additional data re-partitioning, which may
incur extra data shuffling overhead that has to be mitigated or amortized. Thus, a careful
orchestration of the parameters is needed to ensure that Chopper’s benefits outweigh the
costs.

1.2.3 File System Monitoring for Large Scale Storage Systems

Many small-scale local storage systems provide mechanisms to detect and report data events,
such as file creation, modification, and deletion. Tools such as inotify [124], kqueue [108],
and FileSystemWatcher [131] enable developers and applications to respond to data events.
However, such tools are not scalable and suitable for large-scale parallel file systems, like,
Lustre [12] and IBM’s Spectrum Scale [168] (formally known as GPFS), and object-based
storage systems, like Ceph [201] and Gluster [79]. Such large-scale storage systems often
maintain an internal metadata collection catalog, such as Lustre’s Changelog, IBM Spectrum
Scale’s mmaudit, Ceph’s Journal, and Gluster’s libgfchangelog, which enables developers to
query data events. However, each of these tools provides a unique API and event description
language. For example, a file creation action may be recorded as a 01CREAT event in
Lustre’s Changelog, and an openc event in Ceph’s Journal. Furthermore, the difference in
the architecture of parallel file systems and object-based storage systems makes developing
a generalized file system event monitoring tool for large-scale storage systems non-trivial.

In the third part of this dissertation, we present a generalized, and scalable, storage system
monitor, called FSMonitor, for File System Monitor [152, 153, 156]. FSMonitor provides a
common API and event representation for detecting and managing data events from different
large-scale storage systems (parallel file systems and object-based storage systems). We have
architected FSMonitor with a modular Data Storage Interface (DSI) layer to plug-in and use
custom monitoring tools and services. We leverage the internal metadata collection catalog
found in such storage systems to develop a scalable monitor architecture that is capable of
detecting, resolving, and reporting these events. We choose Lustre as our implementation
platform for parallel file systems because Lustre is used by 60% of the top 500 supercom-
puters [72]. For our implementation of FSMonitor on object-based storage system, we select

effectiveness of Chopper. We note that the proposed system can be applied to other DAG-based data
processing framework, such as Dryad [94].

6 Chapter 1. Introduction

Ceph as it is one of the most popular and open-source object stores, with companies such
as Bloomberg, Cisco, and Deutsche-Telekom using Ceph as their storage backend [5]. While
our scalable monitor has so far only been applied to Lustre and Ceph storage systems, its
design makes it applicable to other large-scale storage systems with metadata catalogs, such
as IBM’s Spectrum Scale and Gluster.

1.2.4 Efficient Metadata Indexing for HPC Storage Systems

Metadata indexing on large scale HPC storage systems presents a number of challenges.
First, scaling metadata indexing technology from local file systems to HPC storage systems
is very difficult. In local file systems, the metadata index has to index only a million files,
and thus can be kept in-memory. However, in HPC systems, the index is too large to reside
in-memory. Second, the metadata indexing tool should be able to gather the metadata quickly.
The typical speed for file system crawlers is in the range of 600 to 1,500 files/sec [42]. This
translates to 18 to 36 hours of crawling for a 100 million file data set. A large scale HPC
storage system can often contain a billion files, which implies crawl time in the order of
weeks [42]. Third, the resource requirements should be low. Existing HPC storage system
metadata indexing tools such as LazyBase [62] and Grand Unified File-Index (GUFI) [9]
require dedicated CPU, memory, and disk hardware, making them expensive and difficult
to integrate into the storage system. Fourth, metadata changes must be quickly re-indexed
to prevent a search from returning inaccurate results. It is difficult to keep the metadata
index consistent because collecting metadata changes is often slow [181] and therefore, search
applications are often inefficient to update.

In the fourth part of the dissertation, to address these issues in HPC storage system meta-
data indexing, we present an efficient and scalable metadata indexing and search system,
Brindexer [159]. Brindexer enables a fast and scalable indexing technique by using a
leveled partitioning approach to the file system. Leveled partitioning is different and more
effective than the hierarchical partitioning approach used in state-of-the-art indexing tech-
niques discussed above. Brindexer uses an in-tree indexing design and thus mitigates the
issue of maintaining metadata consistency outside the file system. Brindexer also uses
RDBMS to store the index which makes querying easier and more effective. To overcome
the drawback of slow re-indexing process, Brindexer uses a changelog-based approach to
keep track of metadata changes in the file system.

1.2.5 I/O Load Balancing for Big Data HPC Applications

Load balancing for HPC storage systems is crucial and is being actively studied in recent
works [71]. Extant systems typically attempt to perform load balancing by either having
limited support for read shedding to redirect read requests to replicas of the primary copy,
e.g., in Ceph [135], or performing data migration. Alternatively, per-application load bal-

1.3. Research Contributions 7

ancing has also been considered to balance the load of an application across the various
I/O servers [198]. These existing approaches lack a global view of all the components in the
hierarchical structure of the system, and mainly focus on only a small subset of metrics (e.g.,
only the storage capacity, and not performance of the components). Thus, these approaches
cannot guarantee that the aggregate I/O load of multiple big data applications concurrently
executing atop a parallel file system (with bursty behavior) is evenly distributed.

In the final part of this dissertation, we address the load imbalance problem in Lustre by
enabling a global view of the statistics of key components [151, 158, 196]. We select Lustre to
showcase our approach as Lustre is deployed on 60 of the top 100 fastest supercomputers [72],
and improving its performance will benefit a wide range of applications and users. We go
beyond just network load balancing, e.g., as in NRS [166], or per-application approaches, e.g.,
as in access frequency-based solutions [198], to ensure that the Lustre Object Storage Targets
(OSTs) that actually store and serve the data along with other I/O system components are
load balanced. We leverage the existing hierarchy of Lustre to avoid introducing additional
performance bottlenecks, and co-locate the global component of our load balancer on Lustre’s
Metadata Server (MDS) that has a global view of all other components.

1.3 Research Contributions

From the above five aspects, we demonstrate in this dissertation that we can optimize the
performance of HPC storage systems by making them application-attuned and exploiting the
different layers in the storage stack of HPC storage systems.

To optimize clients, Apache Spark is used as the storage system and for other layers, Lustre
file system and Ceph object store are used. Lustre file system [142] is one of the most widely-
used parallel file systems, supporting ∼60% of the top supercomputers in the latest Top-500
list (June, 2020) [72]. Ceph is one of the most popular and open-source object stores, with
companies such as Bloomberg, Cisco, and Deutsche-Telekom using Ceph as their storage
backend [5].

Overall, this dissertation proposes innovative, systemic and algorithmic approaches to tackle
the inefficiency and inflexibility of the data management strategies in modern HPC stor-
age system stack. In the following, we highlight the specific research contributions in this
dissertation.

Analyzing system level statistics to understand HPC application I/O behavior
Improving I/O performance has become the most important factor in modern I/O
bound HPC applications. Therefore, understanding the I/O behavior of HPC appli-
cations is very important for system administrators, file system developers, and HPC
users. In this work, we collect Lustre file system server level statistics from two clus-
ters, Cab and Quartz at Lawrence Livermore National Laboratory, for a period of

8 Chapter 1. Introduction

three years and analyze the statistics in an application-agnostic manner. Our studies
indicate interesting results which show that most jobs are write-intensive, showing the
importance of improving file system write performance. Our analysis also lead us to
believe that focus should be on jobs which run for short duration as the majority of
the jobs run for less than an hour. Also, there should be efforts to educate HPC users
to develop applications which perform efficient writes. This would improve I/O per-
formance as well as help in reducing I/O contention among jobs. We believe that our
analysis will help all HPC practitioners to build better file systems and utilize it more
effectively.

Improving the performance of in-memory data analytics frameworks by optimiz-
ing data partitioning Here, we design Chopper, a dynamic partitioning approach
for in-memory data analytic platforms. Chopper determines the optimal number of
partitions and the partitioner for each stage of a running workload with the goal of
minimizing the stage execution time and shuffle traffic. Chopper also considers the
dependencies between stages, including join and cogroup operations, to further reduce
shuffle traffic. By minimizing the stage execution time and shuffle traffic, Chopper
implicitly alleviates the task data skew using different partitioners and improves the
task resource utilization through optimal number of partitions. Experimental results
demonstrate that Chopper effectively improves overall performance by up to 35.2%
for representative workloads compared to standard vanilla Spark.

Building a scalable file system monitor for large scale storage systems In this
work, we present FSMonitor, a generic and scalable file system monitor for capturing
and reporting events on heterogeneous large-scale storage systems. FSMonitor uses a
three-layer approach to file system event monitoring. The lowest layer, DSI, interacts
with a file system to detect events and sends them to the middle layer, Resolution.
Here events are resolved to their absolute path names and aggregated to be sent to
the upper layer, Interface. The Interface layer stores aggregated events which can be
accessed by clients via the FSMonitor API.

Designing an efficient metadata indexer for HPC storage systems In this work, we
present Brindexer, a metadata indexing tool for large-scale HPC storage systems.
Brindexer has an in-tree design where it uses a parallel leveled partitioning approach
to partition the file system namespace into disjoint sub-trees. Brindexer maintains
an internal metadata index database which uses a 2-level database sharding technique
to increase indexing and querying performance. Brindexer also uses a changelog-
based approach to keep track of the metadata changes and re-index the file system.
Brindexer is evaluated on a 4.8 TB Lustre storage system and is compared with
state-of-the-art GUFI and Robinhood engines. Brindexer improves the indexing
performance by 69% and the querying performance by 91% with optimal resource
utilization.

Developing an efficient I/O load balancer to manage HPC applications In this

1.4. Dissertation Organization 9

work, we present the design of an “end-to-end control plane” to optimize parallel and
distributed HPC I/O systems, such as Lustre, by providing efficient load balancing
across storage servers. Our proposed system provides global view of the system, enables
coordination between the clients and servers, and handles the performance degradation
due to resource contention by considering operations on both clients as well as servers.
Our implementation provides a balanced distribution of load over OSTs and OSSs in
the Lustre file system, and is able to handle both PFL and non-PFL layouts for files.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2 we introduce the back-
ground technologies and state-of-the-art related work that lay the foundation of the research
conducted in this dissertation. Chapter 3 presents an analysis of HPC application behav-
ior using real-world I/O statistics. Chapter 4 presents a mechanism for optimizing data
partitioning for in-memory data analytics frameworks. Chapter 5 and Chapter 6 present a
scalable file system monitor and an efficient metadata indexer for large scale HPC storage
systems. Chapter 7 introduces an “end-to-end framework” to balance I/O load for HPC
applications. Chapter 8 concludes and discusses the future directions.

Chapter 2

Background

In this chapter, we provide background required for various aspects of our dissertation. This
dissertation is focused on creating an application-attuned framework for optimizing HPC
storage systems by applying different simple yet effective application-aware strategies and
techniques to existing storage solutions, to bridge the gap between modern data-intensive
applications with the storage systems. This chapter summarizes the state-of-the-art research
that is closely related to the major theme described in the previous chapter. We also compare
them against our work by emphasizing the effectiveness, novelty, and benefits of proposed
workload-aware techniques and algorithms in this dissertation.

2.1 Analysis of I/O Behavior of HPC Workloads

One of the earliest work in analyzing I/O characteristics was done by Pasquale et al. [147]
where they studied the production workload of San Diego Supercomputing Center’s Cray
YMP. I/O analysis of the I/O intensive applications revealed that I/O patterns are predictive.
Nieuwejaar et al. [139] also studied file access characteristics on parallel file system in 1996.
Hus et al. [89] in 2001 focused on analyzing I/O behavior from the application’ perspective,
whereas our work emphasizes on the system side I/O behavior in an application-agnostic
manner. Hsu et al. in 2003 [88] studied the I/O traffic in personal computers and server
workloads. Even on small-scale personal computers, the analysis of I/O traffic showed similar
bursty patterns as our result on large-scale LLNL supercomputers.

In 2004, Wang et al. [199] analyzed workloads in a LLNL cluster. However, they focused
on studying application traces to understand the types and sizes of file requests sent by
application, the size of file reads and writes, node-aware locality and utilization of I/O
bandwidth by nodes. The first ever Common Internet File System (CIFS) workload analysis
was performed by Leung et al. [110] in 2008. Thereafter in 2009, Carns et al. did three
studies [50, 51, 105], all targeting applications in very large scale storage systems at Argonne

10

2.1. Analysis of I/O Behavior of HPC Workloads 11

National Laboratory (ANL). In these three works, they studied application traces from
Darshan I/O characterization tool [104], how components work together to provide I/O
services to applications in Intrepid system [74], and techniques to optimize small file accesses
in parallel file systems for very large scale systems. 2009 was one of the earliest times when
petascale I/O workloads were studied, but all of these studies targetted application traces.
The first work to study failure logs in a large scale storage system was also done in 2009 by
Taerat et al. [183], where they analyzed Blue Gene/L failure log data at both system and
application-levels.

In 2010, Zhao et al. [225] and Shipman et al. [175] studied the Lustre file system. While, Zhao
et al. [225] worked on a prediction model to accurately predict I/O bandwidth in Lustre file
system, Shipman et al. [175] talked about how the world’s largest Lustre file system in 2010
was deployed in the Spider system at Oak Ridge National Laboratory (ORNL). Though both
of these works talked about Lustre file system, none studied the server side characteristics
of large scale deployment of Lustre file system. Oral et al. [144] extended Shipman et al.’s
work [175] at ORNL by discussing the lessons learned from deploying large-scale parallel file
systems in Oak Ridge Leadership Computing Facility (OLCF).

Kim et al. in 2010 [97] studined I/O needs for applications on HPC clusters. This study
involved running synthetic workloads and observing system behavior which is different from
our analysis which studies more than 4 million HPC jobs. Carns et al. [52] in 2011, studied
an application-biased I/O characterization by performing a two month study on Interpid.
In 2012, Saini et al. [169] studied the I/O behavior of five NASA applications on Lustre file
system.

In 2016, Luu et al. [128] and Gunasekaran, et al. [81] discussed the application level I/O
behavior at production scale at ANL and ORNL respectively. They however do not go
into details regarding the characteristics of the storage servers in production scale. Using
application-level behavior, Liu et al. [119] and McKenna et al. [130] in 2016, and Wyatt et
al. [205] in 2017 developed machine learning algorithms to coordinate I/O traffic on large
scale shared storage systems. All of these works focus on managing I/O per-application basis
without considering system-side statistics.

Lim et al. [114] in 2017 studied system-side statistics, but only considering metadata op-
erations without being application-agnostic. We have taken this work one step further by
studying both metadata as well as storage server statistics without being dependent on appli-
cation characteristics. Lockwood et al. [123] built TOKIO in 2018 which uses analysis results
to quantify the degree of I/O contention and the benefit to users to migrate to burst buffers.
The same authors in 2018 provided an extensive analysis [122] from the tools used in TOKIO.
But this analysis like many past studies depends on application knowledge from Darshan.
IOMiner [200] was developed by Wang et al. which provided a unified interface to query
I/O statistics and analyze them. Zhou et al. [227] in 2018 and Yang et al. [208] in 2019 use
the application-level I/O characteristics to build an in-memory computing framework and
an end-to-end I/O monitoring solution.

12 Chapter 2. Background

2.2 Optimization in Big Data Processing Frameworks

A number of recent works have focused on improving the performance of big data processing
frameworks by designing better built-in data partitioning.

Shark [206] supports a column-oriented in-memory storage, using RDDs [212], to efficiently
run SQL queries and iterative machine learning functions. This is achieved by re-planning
query execution mid-query if needed. Spartan [91] automatically partitions the data to
improve data locality in processing large multi-dimensional arrays in a distributed setting. It
transforms the user code into an expression graph based on high-level operators, namely map,
fold, filter, scan and join update, to determine the communication costs of data distribution
between the compute nodes.

Re-partitioning MapReduce tasks has been actively studied [67, 76, 103, 113]. PIKACHU [76]
improves load balancing of MapReduce [67] workloads on clusters with heterogeneous com-
pute capabilities. It specifically targets the reduce phase of MapReduce execution and sched-
ules jobs on slow and fast nodes such that jobs completion times are evened out across
all nodes. On the other hand, Stubby [113] optimizes the given MapReduce workflow by
combining multiple MapReduce jobs into a single job. It searches through the plan space
of a given workflow and applies multiple optimizations, such as vertical packing to com-
bine map and reduce operations from multiple jobs for reducing the network traffic. Simi-
larly, SkewTune [103] mitigates the skewness in MapReduce applications by first detecting
if a node has become idle in a cluster and then by scheduling the longest job on the idle
node [215, 216, 217, 218, 219, 223].

The Hardware Accelerated Range Partitioning (HARP) [203] technique leverages special-
ized processing elements to improve the balance between memory throughput and energy
efficiency by eliminating the compute bottlenecks of the data partitioning process. HARP
makes the case that using dedicated hardware for data partitioning outperforms its software
counterparts and achieves higher parallelism.

Several other works also propose solutions to optimize the data partitioning problem in order
to improve the processing and storage performance of multi-processor systems [61, 102, 189,
226], cloud storage systems [173, 191, 209], database systems [136, 164, 167, 204], and graph
processing systems [58, 80, 174, 187].

2.3 Monitoring of Large Scale Storage Systems

Event monitoring is a critical component that enables many software projects, from software-
defined cyberinfrastructure [56], to auditing programs [41]. These projects all share a com-
mon requirement for file system level events to reliably raise notifications to the tool.

Many tools have been developed to monitor file systems and detect events. A common

2.4. Metadata Indexing in HPC Storage Systems 13

example is inotify [124], a tool for unix-based systems that can attach kernel-level listeners
to directories to identify common file events. Similar tools have been developed for Windows:
FileSystemWatcher [131], kqueue in FreeBSD [108], FSEvents in macOS [37], and fanotify

for Android [116]. These tools are typically limited in the number of directories that can
be concurrently monitored and do not have a uniform definition for file system events. The
inotify monitor places a monitor on each directory it monitors. These monitors each require
1kb of memory.

The Python Watchdog module [165] provides a common interface to invoking multiple mon-
itors, such as inotify, kqueue, and fsevents, as well as a polling option that can be
deployed. Although this tool does not standardize the event interface, it does provide a com-
mon API to using each tool. Facebook’s Watchman [73], FSWatch [64] and FSMon [228]
are similar to Python’s watchdog module which provide a common interface. But all of these
tools rely on the operating system facilities for file system event notification, and therefore
cannot be used to develop a scalable monitoring solution for distributed file system.

Monitoring large-scale Lustre file systems requires the use of specialized tools [133]. An
example for monitoring Lustre is the Robinhood Policy Engine [107] which is capable of
collecting events from Lustre file systems and using them to drive a policy engine to automate
data management tasks, such as purging old files, for example. Robinhood uses an iterative
approach to collect event data from metadata servers, where it queries each Metadata Server
(MDS) for new events sequentially.

2.4 Metadata Indexing in HPC Storage Systems

Inversion [141] is one of the first systems to propose integrating indexes into the file system.
It uses a general-purpose DBMS as the core file system structure, rather than traditional file
system inode and data layouts. Brindexer uses file system inode information to build the
metadata index database. BeFS [77] uses B+tree to index file system metadata. However,
it suffers from scalability issues.

Recent metadata indexing techniques include, Spyglass [111], SmartStore [90], Security
Aware Partitioning [146], and GIGA+ [149] which use a spatial tree, such as k-d tree [210],
or R-tree [82] to index metadata. Brindexer instead uses RDBMS with 2-level database
sharding to efficiently store metadata index information. Other recent metadata indexing
tools, GUFI [9], Robinhood Policy Engine [107], and BorgFS [3], use an external database
for indexing. The metadata snapshot is taken to an external node where the indexing is
performed. Brindexer uses an in-tree design so that no external resources are used that
compromises scalability of the indexing approach. PROMES [118] is another recent approach
which uses provenance to efficiently improve metadata searching performance in storage sys-
tems. However, provenance depends on building relationship graph which is infeasible on
large-scale HPC storage systems. Therefore, this technique serves well for single node file

14 Chapter 2. Background

systems [18, 65, 66, 151, 152, 153, 154, 155, 159, 160, 161, 162, 163, 179, 196].

Dindex [214] is a distributed indexing technique which comprises hierarchical index layers,
each of which is distributed across all nodes. It builds upon distributed hashing, hierarchical
aggregation, and composite identification. Brindexer uses leveled partitioning technique
so that every disjoint sub-tree can be indexed in parallel. TagIt [178], Someta [185], and
EMPRESS [106] are metadata management systems that enable “tag and searching”. The
metadata can be enriched by using custom tags for filtering, pre-processing or automatics
metadata extraction. However, this is inbuilt into the storage system. Client nodes have
more power and faster interconnect, therefore the indexing tool can leverage that power like
Brindexer to index metadata from the file system clients [59, 99, 192, 193, 194, 195].

2.5 Load Management in HPC Storage Systems

Load management has been incorporated into a number of modern distributed storage system
designs. GlusterFS [46] uses elastic hashing algorithm that completely eliminates location
metadata to reduce the risk of data loss, data corruption, and data unavailability. However,
no load balancing is supported across the storage targets. Ceph [135, 201] uses dynamic load
balancing based on CRUSH [202], a pseudo-random placement function. It also adds limited
support for read shedding, where clients belonging to a read flash crowd are redirected to
replicas of the primary copy of the data.

Several recent storage systems have explored optimization techniques for load balancing.
In [68], dynamic data migration is proposed to balance the load under various constraints.
Such approaches add the overhead of migration, while also maintaining availability and con-
sistency. The VectorDot [180] algorithm is able to incorporate all these different constraints,
as it is a multidimensional knapsack problem. It is suitable for hierarchical storage systems,
as it can model hierarchical constraints [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 49, 54, 55, 60, 70, 100, 101, 117, 177, 182, 186, 197, 207, 220, 221, 222, 224].

Machine learning and data mining techniques have also been used for the more general
problem of resource allocation that also includes some load balancing. Martinez et. al. [129]
introduce basic learning techniques for improving scheduling in hardware systems. These
techniques are focused on individual hardware components and cannot be easily adapted to
distributed file systems. A rule based approach to balance load in distributed file servers
using graph mining methods is proposed in [78], where access patterns of files is used to
relocate the file sets among different file servers. Schaerf et. al. [171] explore the problem
space of adaptive load balancing using reinforcement learning techniques. Game Theory is
also used for resource allocation [161]. Google has recently explored machine learning to
optimize various system-level metrics [132].

Chapter 3

Understanding HPC Application I/O
Behavior Using System Level
Statistics

3.1 Introduction

The current trend for high performance computing (HPC) systems is that processor per-
formance improves at a rate of 20% per year, while disk access time improves by only 10%
every year [85]. As a result, massively parallel HPC applications can suffer from imbalance
in computation and I/O performance, with I/O operations becoming a limiting factor in
application efficiency [105]. To mitigate this problem, much effort has been dedicated to
implementing high performance parallel file systems to support the I/O needs of HPC ap-
plications. The Lustre file system [142] is one of the most widely-used parallel file systems,
supporting seven of the top ten supercomputers in the latest Top-500 list (June, 2020) [72].

Even though HPC parallel file systems such as Lustre provide much higher bandwidth and
reliability than other options, continual improvement of parallel file systems is needed to
reduce the impact of the increasing I/O performance bottleneck. File system designers need
a comprehensive understanding of the I/O workloads on current HPC systems so that they
can design successful next-generation file systems. Additionally, HPC system designers and
system administrators need to understand both file system and application behavior so that
they can design and tune HPC systems to run as efficiently as possible. Traditionally, I/O
and storage analysis efforts have concentrated on analyzing application I/O behavior from
application-level statistics [88, 89, 97, 122, 139, 147, 169], and there have been significant
studies on the I/O workloads of large scale systems [50, 51, 52, 105, 123, 199, 200] which
identify potential I/O bottlenecks in applications and suggest improvements to HPC users.
However, while these studies can give clues about how particular applications utilize and

15

16
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

stress HPC file systems, they do not give true insight into storage system performance under
a general load. Thus, in order to draw meaningful conclusions about how to improve parallel
file system designs for all users of an HPC system, we need to analyze statistics captured
from the file system itself (from file system data on compute nodes and from data on servers
that manage the I/O requests from HPC applications) independently of user applications.

Some of the earliest studies of HPC file systems utilizing system statistics were in 2010 [175,
225]. These works analyzed the deployment of Lustre file systems and lessons learned from
them. However, to the best of our knowledge, there have not been efforts which analyze file
system statistics in an application-agnostic manner to understand how to support a general
HPC workload. Lawrence Livermore National Laboratory (LLNL) is home to a variety of
clusters that utilize Lustre file systems as primary storage, and millions of jobs run on these
systems. In this effort, we take advantage of the Lustre resources at LLNL and perform a
study of general application behavior using file system statistics from Lustre.

In this chapter, we collect and study file system statistics from two Livermore Computing
systems with 15 PiB Lustre file systems at LLNL, namely Quartz and Cab1. We collect two
types of data from these systems.

• Aggregate Job Statistics: This data represents aggregate statistics collected from file
system daemons on compute nodes for all jobs that ran on these two systems during
the logging period: for Cab April 2015 – March 2018, and for Quartz April 2017 –
March 2018.

• Time-Series Job Statistics: This data represents time series data collected at 60-second
intervals from the metadata server and object storage servers of Lustre for each job;
i.e., for each job, we record summary statistics for every minute of the running job
during which I/O operations occurred. We collected this data from Quartz for the
period June 7, 2018 – July 10, 2018.

We analyze these system statistics without knowledge of the types of applications running
on these systems with the goal of answering questions such as:

• What are the typical I/O characteristics of I/O-heavy jobs? For example, do the jobs
perform efficient writes with large byte counts per operation? Or do they perform
many small (inefficient) write requests?

• How do I/O operations of jobs affect the metadata server?

• Is I/O traffic heavier on any particular day of the month or day of the week?

• Can a single long-running job have a significant affect on the performance of the object
storage servers?

1Cab was decommissioned in June 2018.

3.2. Background 17

• How does the size of application output files correlate with compute node memory
size?

Our study of application-agnostic I/O statistics from the Lustre file system contributes to the
state-of-the-art in I/O behavior understanding. We provide insight into how general HPC
workloads affect the performance of file systems, which can aid system architects in improving
file system and storage system designs and system administrators in tuning existing systems
and advising users of best practices. These improvements will help to alleviate the I/O
imbalance in HPC systems and increase the overall efficiency of HPC applications.

3.2 Background

In this section, we first describe the architecture of the Lustre file system. Following this,
we describe LLNL computing systems we utilized in this work.

3.2.1 Lustre Parallel File System

Lustre Clients

. . .

Management Server (MGS)

Metadata Server (MDS)

Management
Target (MGT)

Metadata
Target (MDT)

Distributed
Name Space
(DNE)
MDSs &
MDTs

. . .

. . .

Object Storage Servers (OSS) &
Object Storage Targets (OSTs)

. . .

direct,
parallel

file
access

Lustre
Netw

ork (LNet)

Figure 3.1: An overview of Lustre architecture.

The architecture of the Lustre file system is shown in Figure 3.1. Lustre has a client-server
network architecture and is designed for high performance and scalability. The Management
Server (MGS) is responsible for storing the configuration information for the entire Lustre
file system. This persistent information is stored on the Management Target (MGT). The
Metadata Server (MDS) manages all the namespace operations for the file system. The
namespace metadata, such as directories, file names, file layout, and access permissions are

18
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

stored in an Metadata Target (MDT). Every Lustre file system must have a minimum of one
MDT. Object Storage Servers (OSSes) provide the storage for the file contents in a Lustre
file system. Each file is stored on one or more Object Storage Target (OST)s mounted on the
OSS. Applications access the file system data via Lustre clients which interact with OSSes
directly for parallel file accesses. The internal high-speed data networking protocol for Lustre
file system is abstracted and is managed by the Lustre Network (LNet) layer.

3.2.2 Clusters

Table 3.1: Cluster Configurations.

Cab Quartz
Processor Architecture Xeon 8-core E5-2670 Xeon 8-core E5-2695
Operating System TOSS 2 TOSS 3
Processor Clock Rate 2.6 GHz 2.1 GHz
Nodes 1,296 2,634
Cores per node 16 36
Total Cores 20,736 96,768
Memory per node 32 GB 128 GB
Total Memory 41.5 TB 344.06 TB
Interconnect QDR Infiniband Intel Omni-Path 100 Gb/s
Tflops 426.0 3,251.4

Table 3.1 gives an overview of the two compute clusters (Cab and Quartz) at LLNL used
in our study. Both clusters have a 15 PiB Lustre file system as primary storage.

3.3 Data Collection

We collected two categories of file system data from Cab and Quartz.

• Aggregate Job Statistics

• Time-Series Job Statistics

3.3.1 Aggregate Job Statistics

The aggregate job statistics were collected on the client (compute) nodes, by gathering Lustre
counter data just before and after the job runs, and calculating the difference. The counter
data are acquired from /proc/fs/lustre/llite/lustre-file-system/stats which is exported by the
Lustre client. The statistics in this file reflect the requests as they pass through the interface
between the Linux Virtual File System (VFS) and Lustre. Any file system request handled

3.3. Data Collection 19

entirely by VFS is not included, nor is a background activity such as re-transmission of
a low-level Lustre (not user process) request after server recovery from a crash. All the
read- and write-related system calls result in VFS calling into Lustre code, so the read- and
write-related counters we use reflect every system call the job made. The statistics are per
file system, not per Lustre OSS. These counters start at 0 when the Lustre file system is
mounted, and are monotonically increasing until they wrap at 263 − 1.

The specific statistics used are:

• starttime, endtime, duration, uid, nodes : These give the time when the job was started,
when it ended, the duration of the job, the anonymized user ID of the job submitter,
and the number of nodes on which the job ran.

• mkdir, mknod, open, rename, rmdir, unlink : These are the total metadata statistics
recorded for the job.

• read bytes, write bytes : These represent the total number of bytes read and written by
the job to the Lustre file system.

• read bytes count, write bytes count : These give the number of read and write calls
made by the job to the Lustre file system.

• recv bytes, recv count, send bytes, send count : These network statistics give the num-
ber of packets received and sent as well the number of bytes received and sent over
LNet.

Both Cab and Quartz use the SLURM job scheduler [172]. SLURM was configured to run
a prolog script after nodes have been allocated, but before the user’s job script is run. This
prolog script records the counts from the Lustre procfile (/proc/fs/lustre/llite/lustre-file-
system/stats) at that time, for each node in the allocation. After the job script completes,
slurm runs an epilog script. For each node in the allocation, the epilog script extracts the
counters from the procfile, and calculates the difference between the “after” and “before”
values for each counter. These per-node totals are then summed to obtain the total for the
job. This total is stored in an RDMS database, which we queried for this data collection.

The Aggregate Job Statistics were collected on Cab for three years (April 2015 – March 2018),
whereas on Quartz, they were collected for one year (April 2017 – March 2018).

3.3.2 Time-Series Job Statistics

Time series data on Lustre file system usage was gathered on the Lustre server nodes via the
Lustre JobStats feature [126]. JobStats includes a job ID in every request the Lustre client
sends to the servers. The Lustre server records statistics describing the requests received

20
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

per Job ID. As a result, file system requests which are handled entirely by VFS, or which
are satisfied by cached data on the client node, are not reflected in JobStats data. These
statistics are gathered per-server, so the total I/O for a job is the sum of the values reported
by all servers. File system read() and write() related requests include a count of bytes
to be transferred. JobStats records the number of such requests received, the minimum and
maximum byte count seen in requests received so far, and the sum of bytes transferred. If
no requests for a given job ID are received for 600 seconds, statistics for that job ID are
discarded. The absence of a job ID in the statistics on a server means the server received no
requests for that job within the last 600 seconds, and so is equivalent to 0 valued counters.

We collected data from the servers using Telegraf [93] and a customized lustre2 plugin which
samples the statistics by reading /proc files Lustre exports. The proc files were /proc/fs/lus-
tre/mdt/*/job stats on Lustre metadata servers, and /proc/fs/lustre/obdfilter/*/job stats on
Lustre object storage servers. We took one sample every 60 seconds. The data gathered by
Telegraf was stored in influxdb [92]. The raw samples were dumped from influxdb as CSV
for analysis.

The specific statistics used are:

• MDS - jobstats create, jobstats mkdir, jobstats mknod, jobstats open, jobstats rename,
jobstats rmdir, jobstats unlink

• OSS - jobstats read bytes, jobstats read calls, jobstats write bytes, jobstats write calls

• jobid, time - Every statistic has a job ID and timestamp attached to it.

Time-Series Job Statistics were collected on Quartz for a period of 34 days (June 7, 2018 –
July 10, 2018).

3.4 Analysis

We first analyze the aggregate job statistics and see the trends of jobs submitted to both
Cab and Quartz. Then we analyze the time-series job statistics to know the details of job
runs.

3.4.1 Aggregate Job Statistics

Overview of Jobs

On Cab, the aggregate job statistics were collected for a period of three years (April 2015
to March 2018). 2,854,478 total jobs ran during this period. The number of unique users
which ran the jobs is 994.

3.4. Analysis 21

On Quartz, the aggregate job statistics were collected for a year (April 2017 to March 2018).
1,401,897 jobs ran during the one year and there were 584 unique users.

We divide these jobs into two groups:

• DAT jobs: Jobs which need to run for more than 24 hours require a special Dedicated
Application Time (DAT) request. Users receive expedited access to the systems that
would allow them to run larger problems for longer periods of time. On Cab, the
number of DAT jobs over three years was 1,868 which were run by 48 unique users.
On Quartz, in one year, the number of DAT jobs was 4,729 an the number of unique
users running these jobs was 134.

• Non-DAT jobs: These were the jobs which ran for less than 24 hours. Our extended
analysis focuses mostly on non-DAT jobs as these were the most common jobs submit-
ted to the clusters.

Table 3.2: Overview of the Jobs run on Cab and Quartz.

Cab Quartz
Duration of Data Collection Apr’15 - Mar’18 Apr’17 - Mar’18
Total Number of Jobs 2,854,478 1,401,897
Total Number of Unique Users 994 584
Number of Dedicated Application Time (DAT) Jobs 1,868 4,729
Number of Unique Users Running DAT Jobs 48 134
#Users with DAT Jobs Doing No I/O to Lustre 10 20
#Users with non-DAT Jobs Doing No I/O to Lustre 196 113

Table 3.2 summarizes the overview of the jobs. It is seen that less than 0.4% jobs receive
expedited access to the systems and run for more than a day.

Overall I/O Statistics

We group both DAT and non-DAT jobs by users and analyze the read and write percentage
of jobs run by them. This is shown in Figure 3.2. We find that some users run purely
write-intensive workloads and some users run only read-intensive workloads.

Observation 1: We observe that read-intensive and write-intensive jobs are dis-
tributed evenly across users. Previously, a lot of work has been done to optimize
performance for write-intensive workloads. However, with the increase in machine
learning workloads, which are predominantly read-intensive, there has been an overall
rise in number of read-intensive workloads. Therefore, there should be an equal focus
in optimizing both reads and writes in a parallel file system.

22
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

Therefore, there should be an equal focus in optimizing both reads and writes in a parallel
file system.

(a) Cab: Percentage I/O by user. (b) Quartz: Percentage I/O by user.

Figure 3.2: Read and write percentage of users on Cab and Quartz.

Analysis of Duration and Number of Nodes

To gain insight into the behavior of jobs in terms of their duration and the number of nodes
used, we plot Cumulative Distribution Function (CDF) for both of these metrics for Cab
and Quartz in Figure 3.3.

(a) Cab: DAT (CDF Du-
ration)

(b) Cab: non-DAT (CDF
Duration)

(c) Cab: DAT (CDF
#Nodes)

(d) Cab: non-DAT (CDF
#Nodes)

(e) Quartz: DAT (CDF
Duration)

(f) Quartz: non-DAT
(CDF Duration)

(g) Quartz: DAT (CDF
#Nodes)

(h) Quartz: non-DAT
(CDF #Nodes)

Figure 3.3: Cumulative Distribution Function for Duration and #Nodes in Cab and Quartz.

3.4. Analysis 23

• DAT Jobs: As can be seen from Figures 3.3a and 3.3e, more than 90% of DAT jobs
take between 25 – 30 hours to run on both Cab and Quartz. Upon further analysis of
the jobs which run for more than 150 hours on Cab, we found that those jobs did not
perform any I/O. For number of nodes used, Figures 3.3c and 3.3g show that 90% of
the jobs use less than 100 nodes.

• non-DAT Jobs: For the duration of non-DAT jobs, 90% of the jobs run for less 2 hours
(Figures 3.3b and 3.3f). The CDF for allocation of nodes of non-DAT jobs shows
that 90% of the jobs were allocated less than 100 nodes.

Table 3.3 shows the detailed statistics for duration and number of nodes allocated.

Job Type Metric Cluster min max mean median

DAT

Duration
(hours)

Cab 24 279.4 27.6 24
Quartz 24 78 24.1 24

#Nodes
Cab 2 758 19.7 8
Quartz 1 1197 19.8 8

non-DAT

Duration
(hours)

Cab 0.0003 23.9 0.8 0.003
Quartz 0.0003 23.9 0.85 0.03

#Nodes
Cab 0 5056 8 2
Quartz 0 2504 3.6 1

Table 3.3: Statistics for duration and nodes for all jobs.

Observation 2: A huge effort has already been given in HPC storage systems to
optimize I/O performance for long running jobs [145, 148]. However, we see that the
majority of jobs on a representative real-world system consist of short-running jobs
which do not occupy a lot of nodes on the system. Therefore, there should be an equal
effort to optimize the I/O performance of small jobs.

Jobs and Users with Efficient and Inefficient Writes

Starting from this section, we only analyze non-DAT jobs. Jobs with inefficient writes are
jobs which write a large amount of data but whose number of bytes per write call is very
low. This write pattern reduces I/O performance. We calculate the mean of bytes written
by all jobs performing I/O. We also calculate the mean value of bytes written per call for all
the jobs performing I/O.

Jobs with inefficient writes have total bytes written greater than the mean total write bytes
across all jobs and bytes written per call is less than the mean value of writes per call across
all jobs. Jobs with efficient writes have both write bytes as well as the bytes written per
write call greater than the respective mean values across all jobs.

• Jobs with inefficient writes: (bytes written > mean bytes written) and (bytes written
per call < mean bytes written per call)

24
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

• Jobs with efficient writes: (bytes written > mean bytes written) and (bytes written
per call > mean bytes written per call)

We first see how many jobs had inefficient writes and then we focus on the users by grouping
jobs by user IDs. The statistics for write bytes and write bytes per call on both Cab and
Quartz are shown in Table 3.4.

Classification Metric Cluster min max mean median

Jobs
Write bytes

Cab 81 KB 474 TB 14.4 GB 39 GB
Quartz 40 Bytes 597 TB 18.1 GB 146 GB

Write bytes
per call

Cab 1 Byte 820 MB 127 KB 390.9 KB
Quartz 1.0 Byte 1.6 GB 219 KB 11.5 MB

Users
Write bytes

Cab 906 KB 4.8 PB 41.4 TB 7.4 TB
Quartz 424 KB 4 PB 43.4 TB 27.1 TB

Write bytes
per call

Cab 178 KB 30.5 GB 184.7 MB 123.9 MB
Quartz 899 KB 108.9 GB 350.4 MB 86.2 MB

Table 3.4: Statistics for write bytes and write bytes per call for all jobs and users performing
I/O on Cab and Quartz.

• Classification by Jobs: On Cab, out of 2,563,299 jobs which write more bytes than the
mean value, 1,654,938 jobs (64.6%) had inefficient writes. On Quartz, out of 1,295,473
jobs, the number of jobs with inefficient writes was 893,462 (69%). The number of jobs
with efficient writes on Cab and Quartz were 869,046 and 277,911 respectively.

• Classification by Users: On Cab, out of the 294 users whose jobs write more than the
mean value of write bytes, the number of users performing inefficient writes was 138
(46.9%) and the number of users performing efficient writes was 62 (21%). On Quartz,
the number of users performing inefficient and efficient writes were 111 (66%) and 57
(34%) users respectively out of 168 users who write more than the mean value of write
bytes.

Observation 3: The number of jobs and correspondingly the number of users who
perform efficient writes is very less. Therefore, HPC application developers should be
trained to write optimal number of bytes per write call so that the applications can
achieve better I/O performance.

Metadata Operations and Write Bytes

The metadata operations we consider are mkdir and mknod. We sum all metadata operations
in a job and compare the sum with the write bytes for that job. The log-scale values are
plotted and are shown in Figure 3.4. In both Cab and Quartz, it is seen that the number
of metadata operations become larger for larger number of bytes written. We computed the

3.4. Analysis 25

(a) Cab: Metadata vs Write (b) Quartz: Metadata vs Write

Figure 3.4: Relationship between Write Bytes and Metadata operations for Jobs in Cab and
Quartz.

correlation coefficient, R, for each and found that R = 0.93 for Cab and R = 0.59 for Quartz,
indicating strong and moderate correlations, respectively.

Observation 4: There is a positive correlation between metadata operations and
writes, especifically for mkdir and mknod. Therefore, to improve the I/O performance,
metadata operations need to be handled carefully by the metadata servers.

Behavior of Metadata Servers

To manage the increase in metadata, Lustre incorporates distributed namespace (DNE) [125]
- more than 1 MDTs in large HPC storage systems. Here, Lustre has 14 MDTs. The number
of file opens and close requests which are being handled by different MDTs are shown in
Figure 3.5.

It is seen in Figure 3.5 that the number of file opens that being handled is consistent with the
number of jobs and is expected. However, we observe that not all files which are opened are
closed. Moreover, the number of file open requests handled by different MDTs are different.

Observation 5: Not all files which are opened are closed which can lead to sub-
optimal metadata performance due to dangling file pointers. Therefore, HPC users
should be trained to always close open files. Additionally, there is a scope of working
on balancing the metadata load across metadata targets for improving the overall I/O
performance.

26
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

Figure 3.5: #File opens and close handled by different MDTs .

Analysis of I/O Traffic over Time

For this analysis, we asked three questions of our dataset.

1. Is there any trend in I/O activity for particular months, days of the month,
or days of the week?
Are more I/O intensive jobs run during the weekend? Do people run less number of jobs
on holidays? To answer these questions, we plotted heat maps showing the I/O traffic over
the whole data collection period. Due to space constraints, we only show the year 2017 in
Figure 3.6. As seen in the heat maps, there was no particular trend shown by I/O traffic.
Therefore, I/O traffic from jobs cannot be predicted by the job start time with respect to
the calendar or holidays.

(a) Cab: I/O Per Day (b) Cab: I/O Per Day
of Week

(c) Quartz: I/O Per Day (d) Quartz: I/O Per
Day of Week

Figure 3.6: I/O Heat Map for 2017 per day and per day of the week in Cab and Quartz.

3.4. Analysis 27

2. How much does a job which runs for the maximum duration affect the overall
I/O traffic in a month, day, or a day of the week?
We explored whether a job which ran for a long period tended to be responsible for a large
portion of the I/O traffic in a system. We chose the jobs which ran for the longest period of
time in a day, or a day of the week. We then calculated the percentage of total system I/O
traffic contributed by each of those jobs. Figure 3.7 shows the contribution of a job which
runs for the maximum duration to the overall traffic in a particular day and day of the week
in the year 2017. There are few days where the contribution is significant, but overall, no
significant affect was seen.

(a) Cab: Per Day (b) Cab: Per Day of
Week

(c) Quartz: Per Day (d) Quartz: Per Day of
Week

Figure 3.7: Contribution of Job with Maximum Duration on I/O for a day and a day of the
week in 2017.

3. How much does a user with the highest bytes read or written in a day or a
day of the week affect the overall I/O traffic?
Our last question was how much does one user’s I/O contribute to the overall I/O traffic in
the system. To help answer this question, we found the users who performed the maximum
I/O (highest bytes read or written) on a particular day or a day of the week. Then, we
calculated the percentage of total system I/O these users contributed to that day or day of
the week. Figure 3.8 shows the contribution of users with maximum I/O on the overall I/O
traffic for the year 2017. As can be seen, these users have a very significant impact on the
overall I/O of the system. Therefore, job schedulers ideally would schedule other jobs with
little or no I/O while these users run their jobs to reduce I/O contention and job run time.

Observation 6: There is no particular trend of I/O corresponding to a month, day
of a month, or day of a week. Therefore, HPC I/O intensive jobs cannot be less
I/O contended if submitted during a particular time. As expected, the I/O during a
particular time when multiple I/O intensive jobs run on the system, is dominated by
the job which does the maximum I/O rather than the job which runs for the maximum
duration. Therefore, I/O optimizations should not be focused for long running jobs,
and there is no correlation between the duration of a job and the amount of I/O requests
that the job generates.

28
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

(a) Cab: Per Day (b) Cab: Per Day of
Week

(c) Quartz: Per Day (d) Quartz: Per Day of
Week

Figure 3.8: Contribution of User doing maximum I/O (highest read/write bytes) with respect
to total I/O on the system in 2017 on a day and a day of the week’s I/O.

3.4.2 Time-Series Job Statistics

The next few analysis sections involves analyzing the time-series job statistics.

Temporal distribution of I/O within jobs’ runs

Our analysis shows that more than 53% of the jobs submitted to the clusters perform some
I/O. But how are the I/O operations distributed across the jobs’ run time?

Figure 3.9: Percent minutes 11,425 jobs performed any I/O.

All 16,795 jobs in the time-series dataset performed some I/O (the collection method excludes
jobs without I/O). Of those jobs, 11,425 performed either read, write, or both operations.
10,443 jobs performed write operations. Since the time-series dataset records reflect I/O
performed during each one-minute span, we can determine what percentage of the minutes
during a job’s run saw some I/O performed. We will call this percentage “I/O share”. Note
that during a given minute a single byte written or read causes that minute to be included

3.4. Analysis 29

Figure 3.10: Percent minutes 10,443 jobs performed at least one write.

in the I/O share, even though the I/O may have taken only a small fraction of a second.
Figure 3.9 shows the I/O share for jobs which performed read, write, or both operations.
The mean I/O share for these jobs is 78.8%. I/O share for jobs performing write operations
is shown in Figure 3.10. The mean is 80.4%. Both graphs in Figures 3.9 and 3.10 are
similar, therefore write operations dominate the I/O performed by jobs.

Observation 7: On average, jobs which perform I/O spread I/O activities across
78.8% of their runtime. Therefore, I/O optimizations cannot be focused at only certain
time instances of job runtime. We need to work on developing I/O optimizations that
aim to lower I/O contention and improve the overall I/O performance for most of the
duration of application runtime.

Relationship between write bytes and memory

Figure 3.11: Write Bytes written over time by 3 random jobs in Quartz.

30
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

Figure 3.11 shows the write pattern for 3 randomly chosen jobs. It is seen that the write
bytes over time is periodic. Therefore, we assume that the bursts represent writing a single
file and we add up the write bytes to get the size of the file. This single file could represent
a checkpoint of the application data.

In the Quartz time-series dataset, 16,795 jobs were recorded. The total memory in one node
in Quartz is 128 GB. We calculate the size of memory as 128 GB ∗ job node count. Only 170
jobs wrote in bursts larger than 50% of memory. 16,485 jobs wrote bursts which are smaller
than than 15% of memory, while 16,173 jobs wrote bursts smaller than 5% of memory.

Observation 8: More than 95% of applications write in bursts of size less than 5%
memory. Therefore, memory size is not a good predictor of write burst size as is used
in many previous I/O optimization works [130]. We need better prediction approaches,
such as [96] to predict I/O bursts.

Next, we inspect the write burst patterns for all I/O jobs in Quartz. First, burst size is
compared to memory size. For every job, the I/O duration of the job is divided into 5
categories.

• percent LessThan1: Percent of the total I/O duration when the job writes bursts
are < 1% memory.

• percent 1To5: %Duration of the total I/O duration when the job writes bursts are
≥ 1% and < 5% memory.

• percent 5To10: %Duration of the total I/O duration when the job writes bursts are
≥ 5% and < 10% memory.

• percent 10To50: %Duration of the total I/O duration when the job writes bursts
are ≥ 10% and < 50% memory.

• percent 50To100: %Duration of the total I/O duration when the job writes bursts
are ≥ 50% and ≤ 100% memory.

Figure 3.12 shows how much of the job time is associated with different sizes of write bursts,
possibly to checkpoint data. It is clear from the figure that most of the jobs spend 100% of
the I/O minutes in utilizing less than 1% memory, while there are few jobs which spend all
I/O minutes writing bursts in sizes between 10 – 50% of memory.

Observation 9: 90% of jobs never write bursts larger than 1% of memory size.
Therefore, we can ideally use more portions in the memory of an HPC storage system
to increase the prefetching capacity and improve the overall I/O performance.

3.4. Analysis 31

Figure 3.12: % I/O duration vs. write burst size as % of memory.

Figure 3.13: Percent I/O duration vs vs size of write bursts.

We also look at the absolute size of the write bursts and what percentage of the job I/O
duration is associated with different sizes of bursts. Similar to Figure 3.12, Figure 3.13 shows
the percentage of I/O time during which jobs issue different sizes of bursts. This is for all
jobs which performed I/O.

The categories of data sizes are:

• 0 Bytes

• Less than 1 KB

• Between 1 KB and 1 MB

• Between 1 MB and 1 GB

• Between 1 GB and 1 TB

• More than 1 TB

Our analysis shows that 73% jobs spend greater than 50% of their I/O time to write data
bursts whose size is between 1 KB and 1 MB. There are many jobs which spend more than
90% time writing bursts of size 1 MB to 1 GB.

32
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

Observation 10: Most jobs write burst data in the range of few kilobytes for the
majority of their I/O duration. In the past, I/O optimizations have worked on large
checkpoint data. However, we observe that there is a significant portion of checkpoint
data with small writes. Therefore, I/O optimizations should also be done for burst
write requests having small number of bytes.

Demystifying I/O Contention

Figure 3.14a shows the total amount of data which is transferred at different hours of the
day. We observe that the largest amount of I/O activity is performed by runs which start
at 5AM and 11AM local time.

In Figure 3.14b, we plot the percentage of I/O time for applications across different hours
of the day. The percentage of I/O time of an application is plotted as percentage of the
maximum I/O time among all runs which perform similar I/O behavior to normalize it
across applications. However, we observe that runs started at 5AM and 11AM have the
highest percentage of I/O time due to the high I/O activity during this time.

(a) Total I/O for every hour throughout the day. (b) Percentage of I/O time noramlized for simi-
lar jobs starting at different hours throughout the
day.

Figure 3.14: Plotting I/O behavior of application for every hour throughout the day.

Observation 11: I/O contention adversely affects the I/O performance for jobs, re-
sulting in similar applications spending more time doing I/O during the time period
when other applications are also performing considerable I/O. This makes I/O per-
formance the bottleneck for improving the overall performance of an HPC application.
Therefore, much effort should be done in handling I/O contentions in the HPC centers.

3.5. Discussion 33

3.5 Discussion

The analysis of the server level statistics gave interesting insights into HPC application I/O
behavior. The study though focused on Livermore Computing resources, the insights can
be extended for other HPC centers. The study is conducted on a real-world deployment of
Lustre file system, which is one of the most popular parallel file systems used in the top 100
supercomputers [72]. The jobs which are studied in this chapter are representative of other
high performance computing centers, like National Energy Research Scientific Computing
Center (NERSC) [148], and Oak Ridge Leadership Computing Facility (OLCF) [145].

3.5.1 Lessons for HPC admininistrators

• There is an equal distribution of reads and writes per user in the HPC storage system.
Therefore, equal focus needs to be given on optimizing both reads and writes in a
parallel file system.

• The mean duration of jobs is less than 52 minutes which suggests that job scheduling
and I/O contention strategies should be developed for shorter duration jobs rather
than jobs which run for many hours.

• It also seems to contradict the conventional wisdom that defensive I/O is the primary
use of HPC file systems, which may explain the very small number of jobs which wrote
bursts larger than 1% of memory.

• A small number of jobs generated most of the load on the file system. Focusing on
improving the I/O behavior of jobs which perform maximum I/O will be more beneficial
for overall I/O performance than focusing on jobs which run for long durations.

• Very few applications perform efficient writes to the file system. There are applications
which write burst sizes greater than 50% of memory; these may be checkpoints.

• Effort should be made in identifying periods of I/O contention in different HPC centers
and users should be educated to submit I/O intensive jobs outside of those times to
improve I/O performance of the overall system.

• There should be optimizations for balancing the metadata load across the metadata
servers which can adversely impact the I/O performance.

3.5.2 Lessons for HPC users

• Users who run write-intensive workloads on parallel file system need to perform efficient
writes. Only 22% users perform efficient writes, which degrades the I/O performance

34
Chapter 3. Understanding HPC Application I/O Behavior Using System

Level Statistics

of the entire system. The users can get better I/O performance by performing more
write bytes per write function call.

• Starting an I/O intensive job at particular time instants can be beneficial in facing
less I/O contention which would improve the overall performance of the application.
Therefore, HPC users should know which periods of the day are bad for submitting
I/O intensive applications.

• A lot of memory remains unused for I/O operations. Therefore, HPC application
developers can improve I/O performance by prefetching data into memory.

3.6 Chapter Summary

Improving I/O performance has become the most important factor in modern I/O bound
HPC applications. Therefore, understanding the I/O behavior of HPC applications is very
important for system administrators, file system developers, and HPC users. This chapter
collected Lustre file system server level statistics from two clusters, Cab and Quartz, at
the Lawrence Livermore National Laboratory, for a period of three years and analyzed the
statistics in an application-agnostic manner. Our studies have indicated interesting results
which show that due to the increase in popularity of machine learning jobs, the HOC jobs now
have an even distribution of write-intensive and read-intensive jobs, showing the importance
of giving equal priority in improving file system read and write performance. Our analysis
also led us to believe that there should be focus on I/O optimizations for jobs which run for
short duration. Also, there should be efforts to educate HPC users to develop applications
which perform efficient writes. Moreover, the metadata spread across metadata servers are
unbalanced and there should be efforts to balance the load or migrate metadata operations
to less loaded metadata server. Much effort is also needed to mitigate the effect of I/O
contention that adversely impacts the I/O performance of the entire system. We believe
that our analysis will help all HPC practitioners to build better file systems and utilize it
more effectively.

Chapter 4

Optimizing Data Partitioning for
In-Memory Data Analytics
Frameworks

4.1 Introduction

Large scale in-memory data analytic platforms, such as Spark [211, 212], are being increas-
ingly adopted by both academia and industry for processing data for a myriad of applications
and data sources. These platforms are able to greatly reduce the amount of disk I/Os by
caching the intermediate application data in-memory, and leverage more powerful and flexible
direct acyclic graphs (DAG) based task scheduling. Thus, in-memory platforms outperform
widely-used MapReduce [67]. The main advantage of a DAG-based programming paradigm
is the flexibility it offers to the users in expressing their application requirements. However,
the downside is that complicated task scheduling makes identifying application bottlenecks
and performance tuning increasingly challenging.

There is a plethora of application-specific parameters that impact runtime performance in
Spark, such as tasks parallelism, data compression and executor resource configuration. In
typical data processing systems, the input (or intermediate) data is divided into logical
subsets, called partitions. Specifically, in Spark, a partition can not be divided between
multiple compute nodes for execution, and each compute node in the cluster processes one
or more partitions. Moreover, a user can configure the number of partitions and how the
data should be partitioned (i.e., hash or range partitioning schemes) for each Spark job.
Suboptimal task partitioning or selecting a non-optimal partition scheme can significantly
increase workload execution time. For instance, if a partition strategy launches too many
tasks within a computation phase, this would lead to CPU and memory resource contention,
and thus lose performance. Conversely, if too few tasks are launched, the system would have

35

36
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

low resource utilization and would again result in reduced performance.

Moreover, inferior partitioning can lead to serious data skew across tasks, which would even-
tually result in some tasks taking significantly longer time to complete than others. As data
processing frameworks usually employ a global barrier between computation phases, it is
critical to have all the tasks in the same phase finish approximately at the same time, so as
to avoid stragglers that can hold back otherwise fast-running tasks. The right scheme for
data partitioning is the key for extracting high performance from the underlying hardware
resources. However, finding a data partitioning scheme that gives the best or highest per-
formance is non-trivial. This is because, data analytic workflows typically involve complex
algorithms, e.g., machine learning and graph processing. Thus, the resulting task execution
plan can become extremely complicated with increasing number of multiple computation
phases. Moreover, given that each computation phase is different, the optimal number of
partitions for each phase can also be different, further complicating the problem.

Spark provides two methods for users to control task parallelism. One method is to use a
workload specific configuration parameter, default.parallelism, which serves as the default
number of tasks to use for when the number of partitions is not specified. The second method
is to use repartitioning APIs, which allow the users to repartition the data. Spark does not
support changing of data parallelism between different computation phases except via manual
partitioning within a user program through repartitioning APIs. This is problematic because
the optimal number of partitions can be affected by the size of the data. Users would have
to change and recompile the program every time they process a different data set. Thus, a
clear opportunity for optimization is lost due to the rigid partitioning approach.

In this chapter, we propose Chopper, an auto-partitioning system for Spark1 that auto-
matically determines the optimal number of partitions for each computation phase during
workload execution. Chopper alleviates the need for users to manually tune their workloads
to mitigate data skewness and suboptimal task parallelism. Our proposed dynamic data par-
titioning is challenging due to several reasons. First, since Spark does not support changing
tasks parallelism parameters for each computation phase, Chopper would need to design
a new interface to enable the envisioned dynamic tuning of task parallelism. Second, the
optimal data partitions differ across different computation phases of workloads. Chopper
needs to understand application characteristics that affect the task parallelism in order to
select an appropriate partitioning strategy. Finally, to adjust the number of tasks, Chopper
may introduce additional data repartitioning, which may incur extra data shuffling overhead
that has to be mitigated or amortized. Thus, a careful orchestration of the parameters is
needed to ensure that Chopper’s benefits outweigh the costs.

To address the above challenges, Chopper first modifies Spark to support dynamically
changing data partitions through an application specific configuration file. Chopper checks

1We use Spark as our evaluation DAG-based data processing framework to implement and showcase the
effectiveness of Chopper. We note that the proposed system can be applied to other DAG-based data
processing framework, such as Dryad [94].

4.2. Background and Motivation 37

different numbers of data partitions before scheduling the next computation phase. Informa-
tion gathering about the application execution is achieved via several lightweight test runs,
which are then analyzed to identify task profiles, data skewness, and optimization opportuni-
ties. Chopper uses this information along with a heuristic to compute a data repartitioning
scheme, which minimizes the data skew, determines the right tasks parallelism for each com-
putation phase, while minimizing the repartitioning overhead.

Specifically, this chapter makes the following contributions.

1. We enable dynamic tuning of task parallelism for each computation phase in DAG-
based in-memory analytics platforms such as Spark.

2. We design a heuristic to carefully compute suitable data repartitioning schemes with
low repartitioning overhead. Our approach successfully identifies the data skewness and
optimization opportunities and adjusts task parallelism automatically to yield higher
performance compared to the default static approach.

3. We implement Chopper on top of Spark and evaluate the system to demonstrate its
effectiveness. Our experiments demonstrate that Chopper can significantly outper-
form vanilla Spark by up to 35.2% for the studied workloads.

4.2 Background and Motivation

In this section, we first discuss current data partitioning methodologies in Spark. Next, we
present the motivation for our work by studying the performance impact of different number
of data partitions on a representative workload, KMeans [83].

4.2.1 Spark Data Partitioning

In Spark, data is managed as an easy-to-use memory abstraction called resilient distributed
datasets (RDDs) [212]. To process large data in parallel, Spark partitions an RDD into a
collection of immutable partitions (blocks) across a set of machines. Each machine retains
several blocks of an RDD. Spark tasks, with one-to-one relationship with the partitions, are
launched on the machine that stores the partitions. Computation is done in the form of
RDD actions and transformations, which can be used to capture the lineage of a dataset as
a DAG of RDDs, and help in the recreation of an RDD in case of a failure. Such DAGs of
RDDs are maintained in a specialized component, DAGScheduler, which schedules the tasks
for execution.

Fig. 4.1 shows an overview of the Spark DAGScheduler. The input to DAGScheduler are
called jobs (shown as ActiveJob in the figure). Jobs are submitted to the scheduler using a

38
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

Figure 4.1: Overview of Spark DAGScheduler.

submitJob method. Every job requires computation of multiple stages to produce the final
result. Stages are created by shuffle boundaries in the dependency graph, and constitute a set
of tasks where each task is a single unit of work executed on a single machine. The narrow de-
pendencies, e.g., map and filter, allow operations to be executed in parallel and are combined
in a single stage. The wide dependencies, e.g., reduceByKey, require results to be combined
from multiple tasks and cannot be confined to a single stage. Thus, there are two types of
stages: ShuffleMapStage (shown in Fig. 4.1 as ShuffleMapStage1, ShuffleMapStage2, ...,
ShuffleMapStagen), which writes map output files for a shuffle operation, and ResultStage,
i.e., the final stage in a job. ShuffleMapStage and ResultStage are created in the scheduler
using newShuffleMapStage and newResultStage methods, respectively.

In Spark, tasks are generated based on the number of partitions of an input RDD at a
particular stage. The same function is executed on every partition of an RDD by each
task. In Fig. 4.1, ShuffleMapStage2 is expanded to show the operations involved in a
particular stage. Different operations in a stage form different RDDs (RDD1, RDD2, ... ,
RDDr). Each RDD consists of a number of tasks that can be operated in parallel. In the
figure, Pαβ represents partitionα of RDDβ. There are m partitions for an RDD. Each RDD
in a stage consists of a narrow dependency on the previous RDD, which enables parallel
execution of multiple tasks. Thus, the number of partitions at each stage determins the level
of parallelism.

Currently, Spark automatically determines the number of partitions based on the dataset size
and the cluster setups. However, the number of partitions can also be configured manually
using spark.default.parallelism parameter. In order to partition the data, Spark provides
two data partitioning schemes, namely hash partitioner and range partitioner. Hash parti-
tioner divides RDD based on the hash values of keys in each record. Data with the same
hash keys are assigned to the same partition. Conversely, range partitioner divides a dataset
into approximately equal-sized partitions, each of which contains data with keys within a
specific range. Range partitioner provides better workload balance, while hash partitioner
ensures that the related records are in the same partition. Hash partitioner is the default
partitioner, however, users can opt to use their own partitioner by extending the Partitioner
interface.

4.2. Background and Motivation 39

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Stages

Partitions=100
Partitions=200
Partitions=300

Partitions=400
Partitions=500

Figure 4.2: Execution time per stage under different number of partitions.

Although Spark provides mechanisms to automatically determine the number of partitions
for a given RDD, it lacks application related knowledge to determine the best parallelism for
a specific job. Moreover, the default hash partitioner is prone to creating workload imbalance
for some input data. Spark provides the flexibility to tailor the configurations for workloads,
however, it is not easy for users to determine the best configurations for each stage of a
workload, especially when workloads may contain hundreds of stages.

4.2.2 Workload Study

To show the impact of data partitioning on application performance, we conduct a study
using KMeans workload from SparkBench [112] and the latest release of Spark (version 1.6.1),
with Hadoop (version 2.6) providing the HDFS [176] storage layer. Our experiments execute
on a 6-node heterogeneous cluster. Three nodes (A, B, C) have 32 cores, 2.0 GHz AMD
processors, 64 GB memory, and are connected through a 10 Gbps Ethernet interconnect.
Two nodes (D, E) have 8 cores, 2.3 GHz Intel processors, 48 GB memory. The the remaining
node (F) has 8 cores, 2.5 GHz Intel processor, and 64 GB memory. Nodes D, E and F are
connected via a 1 Gbps Ethernet interconnect. Node F is configured to be the master node,
while nodes A to E are worker nodes for both HDFS and Spark. Every worker node has
one executor with 40 GB memory, and the remaining memory can be used for the OS buffer
and HDFS data node operations. While our cluster hardware is heterogeneous, we configure
each executor with the same amount of resources, essentially providing same resources to
each component to better match with Spark’s needs, and alleviating the performance impact
due to the heterogeneity of the hardware. Note that, given the increasing heterogeneity in
modern clusters, we do take the heterogeneity of cluster resource into account when designing
Chopper. We repeated each experiment 3 times, and report the average results in the
following.

First, we study the performance impact of different number of partitions. For this test, we
use KMeans workload with 7.3 GB input data size. KMeans has 20 stages in total, and we
change the number of partitions from 100 to 500 and record the execution time for each stage.
Fig. 4.2 shows the results. For every stage, the number of partitions that yields minimum

40
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

 0

 50

 100

 150

 200

 250

 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Number of Partitions

Stage 0

Figure 4.3: Execution time of stage 0 under different partition numbers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 12 13 14 15 16 17

S
hu

ffl
e

D
at

a
(K

B
)

Stage ID

Partitions=100
Partitions=200
Partitions=300

Partitions=400
Partitions=500

Figure 4.4: Shuffle data per stage under different partition numbers.

execution time varies. This shows that different stages have different characteristics and
that the execution time for each stage can vary even under the same configuration. To
further investigate the impact on performance, we study stage-0 in more detail. As shown
in Fig. 4.3, the execution time of a stage changes with the number of partitions, and we
see the worst performance when the number of partitions is set to 100. From this study,
we observed that the number of partitions has an impact on the overall performance of a
workload. Furthermore, different stages inside a workload can have different optimal number
of partitions. In this example, specifying 100 partitions may be an optimal configuration for
overall execution (Fig. 4.2), but clearly it is not optimal for stage-0 (Fig. 4.3).

To better understand the above observed performance impact, we investigate the amount of
shuffle data produced at each stage with different number of partitions—since shuffle has a
big impact on workload performance. For this test, we record the maximum of shuffle read or
write data as representative of shuffle data per stage. For KMeans, only stages 12-17 involve
data shuffle. As shown in Fig. 4.4, any increase in the number of partitions also increases the
shuffle data at each stage. A shuffle stage usually involves repartitioning RDD data. For an
equivalent execution time, if repartitioning is not involved, then the amount of shuffle data
increases from 434.83 KB for 200 partitions to 1081.6 KB for 500 partitions for stage-17,
compared to 217.33 KB of shuffle data when repartitioning is done. Also, when compared
to a large number of partitions, e.g., 2000, there is a significant increase in the execution
time as well as increase in the amount of shuffle data. For 2000 partitions, the execution

4.3. System Design 41

Figure 4.5: System architecture of Chopper.

time is 4.53 minutes and the amount of shuffle data for stage-17 is 4300.8 KB. We observe
38.8% improvement in execution time from repartitioning for similar amount of shuffle data.
Also there is 46.1% improvement in execution time, and 94.9% reduction in the amount of
shuffle data per stage when compared to large (i.e., 2000) number of partitions.

These experiments show that the number of partitions is an important configuration param-
eter in Spark and can help improve the performance of a workload. The optimal number of
partitions not only varies with workload characteristics, but is also different among different
stages of a workload. We leverage these findings in designing the auto-partitioning scheme
of Chopper.

4.3 System Design

In this section, we present the design of Chopper, and how it achieves automatic reparti-
tioning of RDDs for improved performance and system efficiency.

Fig. 4.5 illustrates the overall architecture of Chopper. We design and implement Chopper
as an independent component outside of Spark. As Spark is a fast evolving system, we keep
the changes to Spark for enabling our dynamic partitioning to a minimum. This reduces code
maintenance overhead while ensuring adoption of Chopper for real-world use cases. Chop-
per consists of a partition optimizer, a configuration generator, a statistics collector, and a
workload database. In addition, Chopper extends the Spark’s DAGScheduler to support
dynamic partitioning configuration and employs a co-partition-aware scheduling mechanism
to reduce network traffic whenever possible. Statistics collector communicates with Spark to
gather runtime information and statistics of Spark applications. The collector can be easily

42
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

Figure 4.6: An example generated Spark workload configuration in Chopper.

extended to gather additional information as needed. Workload DB stores the observed in-
formation including the input and intermediate data size, the number of stages, the number
of tasks per stage, and the resource utilization information. Partition optimizer retrieves ap-
plication statistics, trains models, and computes an optimized partition scheme based on the
current statistics and the trained models for the workload to be optimized. This information
is also stored in Workload DB for future use. Partition optimizer then generates a workload
specific configuration file. The extended dynamic partitioning DAGScheduler changes the
number of partitions and the partition scheme per stage according to the generated Spark
configuration file. Finally, the co-partitioning-aware component schedules partitions that
are in the same key range on the same machine if possible to decrease the amount of shuffle
data. The partition optimizer does not need to consider data locality because the input of
the repartitioning phase is the local output of the previous Map phase, and the destinations
of the output of the repartitioning phase depend on the designated shuffle scheme. Thus,
existing locality is automatically preserved.

Our system allows dynamic updates to the Spark configuration file whenever more runtime
information is obtained. Chopper modifies Spark to allow applications to recognize, read,
and adopt the new partition scheme.

4.3.1 Enable Auto-Partitioning

An example application configuration file produced by Chopper is shown in Fig. 4.6. It
consists of multiple tuples each containing a signature; the partitioner, and the number
of partitions for a particular stage. We use stage signatures to identify stages that invoke
identical transformations and actions. This is helpful when the number of iterations within a
machine learning workload is unknown, where we can: (a) use the same partition scheme for
all the iterations; or (b) use previously trained models to dynamically determine the number
of partitions to use if the intermediate data size changes across iterations.

When an application is submitted to a Spark cluster, a Spark driver program is launched
in which a SparkContext is instantiated. SparkContext then initiates our auto-partitioning
aware DAGScheduler. The scheduler checks the Spark configuration file before a stage is
executed. If the partition scheme is different from the current one, the scheduler changes
the scheme based on the one specified in the configuration file. Each RDD has five internal
properties, namely, partition list, function to compute for every partition’s dependency list

4.3. System Design 43

on other RDDs, partitioner, and a list of locations to compute every partition. Chopper
changes the partitioner properties to enable repartitioning across stages.

Chopper also supports dynamic updates to the Spark application configuration file based
on the runtime information of current running workload. In particular, DAGScheduler pe-
riodically checks the updated configuration file and uses the updated partitioning scheme if
available. This improves the partitioning efficiency and overall performance.

4.3.2 Determine Stage-Level Partition Scheme

The partition optimizer is responsible for computing a desirable partition scheme for each
stage of a workload, given the collected workload history, and current input data and size.
The optimizer not only considers the execution time and shuffle data size of a stage but also
the shuffle dependencies between RDDs. In the following, we describe how this is achieved for
the stage-level information. The use of global DAG information is discussed in Section 4.3.3.

Spark provides two types of partitioners, namely range partitioner and hash partitioner.
Different data characteristics and data distributions require different partitioners to achieve
optimal performance. Range partitioner creates data partitions with approximately same-
sized ranges. RDD tuples that have keys in the same range are allocated to the same
partition. Spark determines the ranges through sampling of the content of RDDs passed to
it when creating a range partitioner. Thus, the effectiveness of a range partitioner highly
depends on the data contents. A range partition scheme that distributes a RDD evenly
is likely to partition another RDD into a highly-skewed distribution. In contrast, a hash
partitioner allocates tuples using a hash function modulo of the number of partitions. The
hash partitioner attempts to partition data evenly based on a hash function and is less
sensitive to the data contents, and can produce even distributions. However, if the dataset
has hot keys, a partition can become skewed in terms of load, as identical keys are mapped
to the same partition. Consequently, the appropriate choice between the range partitioner
or hash partitioner depends on the dataset characteristics and DAG execution patterns.

To compute the stage level partition scheme, we aim to minimize both the stage execution
time and the amount of shuffle data. Considering stage execution time, and shuffle data that
directly affects the execution time, enables us to capture the right task granularity. This pre-
vents the partitions from both growing unexpectedly large—creating resource contention—
or becoming trivially small—under-utilizing resources and incurring extra task scheduling
overhead. The approach also implicitly alleviates task skew by filtering out inferior partition
schemes.

Equations 4.1, 4.2, 4.3 and 4.4 describe the model learned and the objective function used to
determine the optimal number of partitions. In particular, D denotes the size of input data
for the stage, P denotes the number of partitions, texe represents the execution time of the
stage, and sshuffle is the amount of shuffle data in the stage. t′exe and s′shuffle denote the stage

44
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

execution time and amount of shuffle data obtained using default parallelism, respectively.
Given input data size, Equation 4.4 enables Chopper to determine the optimal number of
partitions minimizing both execution time and the amount of shuffle data. By normalizing
the execution time and the amount of shuffle data with respect to the respective values under
default parallelism, we are able to capture both of our constraints into the same objective
function. Constants α and β can be used to adjust the weights between the two factors.
In our implementation, we set the constants to a default value of 0.5, making them equally
important.

We model the execution time and the amount of shuffle data based on the input data size
of the current stage and the number of partitions as shown in Equations 4.1 and 4.2. This
is a coarse grained model, since it is independent of Spark execution details and focuses on
capturing the relationship between input size, parallelism, execution time and shuffle data.
In particular, we posit that the execution time increases with the input data size, obeying a
combination of cube, square, linear, and sub-linear curves. The amount of shuffle data also
increases or decreases with the number of partitions according to a combination of cube,
square, linear, and sub-linear curves. Note that our model can capture most applications
observed in the real-world use cases for Spark. However, it may not be able to model corner
cases such as those with radically different behavior, e.g., workloads for which execution
time grows with D4. In general, we observe that such a model is simple and computationally
efficient, yet powerful enough to capture applications with different characteristics via various
coefficients of the model. When the cluster resources and other configuration parameters are
fixed, the model fits the actual execution time and amount of shuffle data well with varying
size of input data and number of partitions. The data points needed to train the models are
gathered by the statistics collector. If the collected data points are not sufficient, Chopper
can initiate a few test runs by varying the sampled input data size and the number of
partitions and record the execution time and the amount of shuffle data produced. Chopper
also remembers the statistics from the user workload execution in a production environment,
which can be further leveraged to better train and model the current application behavior.

texe = a1D
3 + b1D

2 + c1D + d1D
1/2 + e1P

3 + f1P
2 + g1P + h1P

1/2, (4.1)

sshuffle = a2D
3 + b2D

2 + c2D + d2D
1/2 + e2P

3 + f2P
2 + g2P + h2P

1/2, (4.2)

cost = αtexe/t
′
exe + βsshuffle/s

′
shuffle (4.3)

min cost (4.4)

Chopper trains two models using Equations 4.1 and 4.2 for every stage of a workload,
one for range partitioning and the other for hash partitioning. Algorithm 1 presents how

4.3. System Design 45

Algorithm 1: Get Stage level Partition Scheme getStagePar.

Input: workload w, stage s, input size d
Output: (partitioner, numPar, cost)
begin

rModel=getRangeParitionModel(w,s)
hModel=getHashPartitionModel(w,s)
(numRangePar,rCost)=getMinPar(rModel,d)
(numHashPar,hCost)=getMinPar(hModel,d)
if rCost < hCost then

return (RangePartitioner,numRangePar,rCost)

else
return (HashPartitioner,numHashPar,hCost)

Chopper calculates the optimized stage level partition scheme given workload w, stage s
and input size d for the stage. The algorithm returns the partitioner, the optimal number of
partitions used for stage s and the cost. Specifically, Chopper retrieves the trained models
of stages for both range partitioning and hash partitioning from the workload database.
After this, Algorithm 1 computes the optimal numbers of partitions with minimal cost for
both range partitioning and hash partitioning using Equation 4.4. Finally, Chopper returns
the partitioner that would incur the lowest cost along with the number of partitions to use.

4.3.3 Globally-Optimized Partition Scheme

After we compute the stage level partition scheme, a naive solution is to compute the optimal
partition scheme for each stage independently and generate the Spark configuration file.
This is shown in Algorithm 2. It gets the DAG information from workload database, iterates
through the DAG, computes the desirable partition scheme for each stage, and adds to a
list of partition scheme. Lastly, the algorithm returns the list of partition schemes, which is
then used to generate the Spark configuration file for the current workload.

Although Algorithm 2 optimizes the partition scheme per stage, it misses the opportunities
to reduce shuffle traffic because of the dependencies between stages and RDDs. For example,
if stage-C joins the RDDs from stage-A and stage-B, the shuffle traffic introduced by join can
be completely eliminated if the two use the same partition scheme and the joined partitions
are allocated on the same machine. However, this cannot be achieved using Algorithm 2. If
the computed optimal scheme of stage-A is (Range, 100) and the optimal scheme of stage-B
is (hash, 200), the shuffle data cannot be eliminated, as the partition schemes of stage-A
and stage-B are different. Even though stage-A and stage-B are optimally partitioned, the
shuffle data of stage-C is sub-optimal. Since join and co-group operation are two of the most
commonly used operations in Spark applications, poor partitioning will typically introduce

46
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

significant shuffle overhead. Consequently, it is critical to optimize the join and co-group
operation to decrease the amount of shuffle data as much as possible.

Another issue is that since the users are allowed to tune and specify customized partition
scheme on their own, Chopper leaves the user optimization intact even when the computed
optimal scheme disagrees with the user specified partition scheme. However, Chopper can
choose to add an additional partition operation if the benefit of introducing the partition
operation significantly outweighs the overhead incurred. For instance, consider a case where
stage-B blows up the number of tasks to by a power of two from its previous stage-A (i.e.,
1002 tasks) due to the user-fixed partition scheme of stage-A. If Chopper coalesces the
number of tasks of stage-A from 100 to 10, it would significantly reduce the number of tasks
in stage-B from 10000 to 100.

Algorithm 2: Get workload partition scheme getWorkloadPar.

Input: workload w, DAG dag, input size D
Output: parList
begin

if dag == null then
dag = getDAG(w)

for stage s in dag do
d=getStageInput(w, s, D)
(partitoner, numPar, cost) = getStagePar(w, s, d)
parList.add(s,partitioner,numPar,cost)

return parList

To remedy this, Chopper determines the partition scheme by globally considering the entire
DAG execution. As described in Algorithm 3, Chopper first groups the DAG graph based
on the stage dependencies. The grouping of DAG graph is started from the end stages of the
graph and iterated towards the source stages. The grouping is based on the join operations
or partition dependencies. The stages with join operations are grouped into a subgraph. The
partition dependencies refer to the cases where the number of stages is determined by the
previous stage, thus Chopper cannot change the partition scheme. After the DAG of the
workload is regrouped, the node within the new DAG can either be a stage or a subgraph that
consists of multiple stages. If the node is a stage, the optimal partition scheme is computed
using Algorithm 1. Otherwise, the node is a subgraph, where the optimal partition scheme is
computed differently. Specifically, we iterate through all the nodes within the subgraph and
get the optimal partition scheme for each node, we then compute the cost of applying each
partition scheme to all the applicable nodes in the graph and return the partition scheme
that has the minimal cost.

Finally, after we compute the globally optimal partition scheme, we check whether the stage
partition is allowed to be changed. If not, and the partition scheme is different, we then
check whether it is beneficial to insert a new repartitioning phase by comparing the cost

4.4. Evaluation 47

using original partitioning to the cost of the new repartitioning phase together with the cost
of optimized partition scheme. If the benefit outweighs the cost by a factor of γ, we choose
to insert a new partition phase into the DAG graph. We empirically set γ to 1.5 to tolerate
the model estimation error.

Algorithm 3: Get globally optimized partition scheme.
Input: workload w, input size D
Output: parList
begin

dag=getReGroupedDAG(w)
for node s in dag do

d=getStageInput(w, s, D)
if s isInstanceOf Stage then

(partitoner, numPar, cost) = getStagePar(w, s, d)

else
(partitoner, numPar, cost) = getSubGraphPar(w, s, d)

if s isFixed then
curCost = getCost(w, s, getPartitioner(w, s), getNumPar(w, s))
optCost = cost + getRepartitionCost(w, s, partioner, numPar)
if optCost < curCost then

s′ = s+ “repartitionstage”
parList.add(s′, partitioner, numPar, optCost)

else
parList.add(s, partitioner, numPar, cost)

return parList

Function getSubGraphPar
Input: workload w, DAG dag, input size D
Output: paritioner, numPar, cost
parList = getWorkloadPar(w, dag, D)
min = parList(0)
for s in parList do

cost = getCost(w, dag, s.partitioner, s.numPar)
if cost < min.cost then

min = s

return (min.partitioiner,min.numPar,min.cost)

Function getCost
Input: workload w,DAG dag, partitioner, numPar
Output: cost
for stage s in dag do

if partitioner == range then
rModel = getRangePartitionModel(w, s)
cost += Equation 4.3

else
hModel = getHashParitionModel(w, s)
cost += Equation 4.3

return cost

4.4 Evaluation

In this section, we evaluate Chopper and demonstrate its effectiveness on the cluster de-
scribed earlier in Section 7.2. We use three representative workloads from SparkBench:
KMeans, PCA, and SQL. KMeans [83] is a popular clustering algorithm that partitions and

48
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

Workload KMeans PCA SQL
Input Size (GB) 21.8 27.6 34.5

Table 4.1: Workloads and input data sizes.

clusters n data points into k clusters in which each data point is assigned to the nearest
center point. The computation requirement of this workload change according to the num-
ber of clusters, the number of data points, and the machine learning workload that exhibits
different resource utilization demand for different stages during the process of iteratively
calculating k clusters. PCA [95] is a commonly used technique to reduce the number of
features in various data mining algorithms such as SVM [63] and logistic regression [87]. It
is both computation and network-intensive machine learning workload that involves multiple
iterations to compute a linearly uncorrelated set of vectors from a set of possibly correlated
ones. SQL is a workload that performs typical query operations that count, aggregate, and
join the data sets. Thus, SQL represents a common real world scenario. SQL is compute
intensive for count and aggregation operations and shuffle intensive in the join phase. The
input data is generated by the corresponding data generator within SparkBench. The input
data size for each workload is shown in Table 4.1. The experiments for vanilla Spark are
conducted with the default configuration, which is set to 300 partitions for all the workloads.
We run all of our experiments three times, and the numbers reported here are from the av-
erage of these runs. Moreoer, we clear the OS cache between runs to preclude the impact of
such caching on observed times.

 0

 2

 4

 6

 8

 10

 12

 14

PCA KMeans SQL

E
xe

cu
tio

n
tim

e
(m

in
)

CHOPPER
Spark

Figure 4.7: Execution time of Spark and Chopper.

4.4.1 Overall Performance of Chopper

Our first test evaluates the overall performance impact of Chopper. Fig. 4.7 illustrates
the total execution time of three workloads comparing Chopper against standard vanilla

4.4. Evaluation 49

Spark. The reported execution time includes the overhead of repartitioning introduced by
Chopper. We can see that Chopper achieves overall improvement in the execution time
by 23.6%, 35.2% and 33.9% for PCA, KMeans and SQL, respectively. This is because
Chopper effectively detects optimal partitioner and the number of partitions for all stages
within each workload. Chopper also performs global optimization to further reduce network
traffic by intelligently co-partitioning dependent RDDs and inserting repartition operations
when the benefits outweigh the cost. We also observe that Chopper is effective for all
types of workloads that exhibit different resource utilization characteristics. The repartition
method of Chopper implicitly reduces the potential data skew and determines the right task
granularity for each workload, thus improving the cluster resource utilization and workload
performance. Thus, Chopper shows significant reduction in the overall execution time for
all the three workloads. The model training of Chopper is conducted offline, and thus is
not in the critical path of workload execution. Moreover, the overhead of repartitioning is
negligible as it involves solving a simple linear programming problem.

4.4.2 Timing Breakdown of Execution Stages

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E
xe

cu
tio

n
tim

e
(s

ec
)

Stage ID

Spark CHOPPER

Figure 4.8: Execution time per stage breakdown of KMeans.

Chopper Spark
Execution Time (sec) 250 372

Table 4.2: Execution time for stage 0 in KMeans.

To better understand how dynamic partitioning of Chopper helps to improve overall per-
formance, in our next test, we examine the detailed timing breakdown of individual workload
stages. Fig. 4.8 depicts the execution time per stage for KMeans. We show the execution
time of stage-0 separately in Table 4.2 since the execution time of stage-0 and that of other
stages differs significantly. We see that Chopper reduces execution time of each stage for
KMeans compared to vanilla Spark, as Chopper is able to customize partition schemes

50
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

StageID 0 1 2 3 4 5 6 7 8 9 10 11 12 - 17 18 19
Chopper 210 210 300 720 300 720 300 720 300 720 300 720 210 380 210

Spark 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

Table 4.3: Repartition of stages using Chopper.

for each stage according to associated history and runtime characteristics. Table 4.3 shows
the number of partitions used by Chopper for different stages compared to vanilla Spark.
Stages 12 to 17 are iterative, and thus are assigned the same number of partitions. We see
that Chopper effectively detects and changes to the correct number of partitions for this
workload rather than using a fixed (default) value throughout the execution.

4.4.3 Impact on Shuffle Stages

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3

S
hu

ffl
e

D
at

a
(K

B
)

Stage ID

Spark CHOPPER

Figure 4.9: Shuffle data per stage for SQL.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4

E
xe

cu
tio

n
tim

e
(s

ec
)

Stage ID

Spark CHOPPER

Figure 4.10: Execution time per stage breakdown of SQL.

In our next test, we use a shuffle-intensive workload, SQL, to study how Chopper reduces
the shuffle traffic by automatically recognizing and co-partitioning dependent RDDs. Fig. 4.9
shows that the shuffle data for all four stages is less under Chopper compared to vanilla
Spark. Stage-4 (not shown in the figure) has the same amount of shuffle data for SQL
workload using Chopper or Spark (i.e., 4.7 GB). However, as seen in Fig. 4.10, stage-4
takes comparatively shorter time to execute using Chopper versus Spark. This is because,

4.4. Evaluation 51

stage 4 is divided into 4 sub-stages where the first two sub-stages have a shuffle write data of
1.9 GB and 2.8 GB. Chopper combines these two sub-stages for shuffle write and provides
the third sub-stage for the shuffle data to be read. This greatly reduces the execution time
for stage 4 as seen in Fig. 4.10. Thus, we demonstrate that Chopper can effectively detect
dependent RDDs and co-partition them to reduce the shuffle traffic and improve the overall
workload performance.

4.4.4 Impact on System Utilization

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

C
P

U
 u

se
d

(%
)

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Figure 4.11: CPU utilization.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

M
em

or
y

us
ed

 (
%

)

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Figure 4.12: Memory utilization.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

T
ot

al
 p

ac
ke

ts
 tr

an
sm

itt
ed

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Figure 4.13: Total transmitted and received packets per second.

52
Chapter 4. Optimizing Data Partitioning for In-Memory Data Analytics

Frameworks

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Figure 4.14: Transactions per second.

In our next experiment, we investigate how Chopper impacts the resource utilization of all
the studied workloads. Fig. 4.11, 4.12, 4.13 and 4.14 depict the CPU utilization, memory
utilization, total number of transmitted and received packets per second, and the total
number of read and write transactions per second, respectively, during the execution of
the workloads under Chopper and vanilla Spark. The numbers show the average of the
statistics collected from the six nodes in our cluster setup. We observe that the performance
of Chopper is either equivalent or in most of the cases better than the performance of vanilla
Spark for the studied workloads. In some cases, Chopper shows improved transactions per
seconds as compared to vanilla Spark because of the high throughput and improved system
performance.

These experiments show that the performance (computed on the basis of execution time and
shuffle data) improves under Chopper compared to vanilla Spark. Also, these improvements
in Chopper yield comparable or better system utilization compared to vanilla Spark.

4.5 Chapter Summary

In this chapter, we design Chopper, a dynamic partitioning approach for in-memory data
analytic platforms. Chopper determines the optimal number of partitions and the parti-
tioner for each stage of a running workload with the goal of minimizing the stage execution
time and shuffle traffic. Chopper also considers the dependencies between stages, includ-
ing join and co-group operations, to further reduce shuffle traffic. By minimizing the stage
execution time and shuffle traffic, Chopper implicitly alleviates the task data skew using
different partitioners and improves the task resource utilization through optimal number
of partitions. Experimental results demonstrate that Chopper effectively improves over-
all performance by up to 35.2% for representative workloads compared to standard vanilla
Spark.

Our current implementation of Chopper has to re-train its models whenever the available
resources are changed. In future, we plan to explore the per-stage performance models that
can work across different resource configurations, i.e., clusters. We will also explore how

4.5. Chapter Summary 53

Chopper behaves under failures. These will further improve the applicability of Chopper
in a cloud environment, where compute resources are failure-prone and scaled as needed.

Chapter 5

File System Monitoring for Large
Scale Storage Systems

5.1 Introduction

Big data science relies on sophisticated workflows that need large storage systems to meet
the demands of their data-intensive workloads. According to a recent report from National
Energy Research Scientific Computing Center (NERSC) [14], the total volume of data stored
at NERSC has grown at an annual rate of 30 percent over the past 10 years. Data may
be stored for short to long periods, be accessible to dynamic groups of collaborators, and
be operated upon by various actors. As data generation volumes and velocities continue
to increase, the rate at which files are created, modified, deleted, and acted upon (e.g.,
permission changes) make manual oversight and management infeasible.

While research automation [21, 56] offers a potential solution to these problems it is first
necessary to be able to capture events in real-time and at scale across a range of large-scale
storage systems. Such events may then be used to automate the data lifecycle (performing
backups, purging stale data, etc.), report usage and enforce restrictions, enable program-
matic management, and even autonomously manage the health of the system. Enabling
scalable, reliable, and standardized event detection and reporting will also be of value to a
range of infrastructures and tools, such as software-defined cyberinfrastructure (SDCI) [75],
auditing [41], and automating analytical pipelines [56, 57]. Such systems enable automation
by allowing programs to respond to file events and initiate tasks.

Many small-scale local storage systems provide mechanisms to detect and report data events,
such as file creation, modification, and deletion. Tools such as inotify [124], kqueue [108],
and FileSystemWatcher [131] enable developers and applications to respond to data events.
However, such tools are not scalable and suitable for large-scale parallel file systems, like,
Lustre [12] and IBM’s Spectrum Scale [168] (formally known as GPFS), and object-based

54

5.2. Background 55

storage systems, like Ceph [201] and Gluster [79]. Such large-scale storage systems often
maintain an internal metadata collection catalog, such as Lustre’s Changelog, IBM Spectrum
Scale’s mmaudit, Ceph’s Journal, and Gluster’s libgfchangelog, which enables developers to
query data events. However, each of these tools provides a unique API and event description
language. For example, a file creation action may be recorded as a 01CREAT event in
Lustre’s Changelog, and an openc event in Ceph’s Journal. Furthermore, the difference in
the architecture of parallel file systems and object-based storage systems makes developing
a generalized file system event monitoring tool for large-scale storage systems non-trivial.

In this chapter, we present a generalized, and scalable, storage system monitor, called
FSMonitor, for Storage Monitor. FSMonitor provides a common API and event repre-
sentation for detecting and managing data events from different large-scale storage systems
(parallel file systems and object-based storage systems). We have architected FSMonitor

with a modular Data Storage Interface (DSI) layer to plug-in and use custom monitoring
tools and services. We leverage the internal metadata collection catalog found in such storage
systems to develop a scalable monitor architecture that is capable of detecting, resolving,
and reporting these events. We choose Lustre as our implementation platform for parallel
file systems because Lustre is used by 60% of the top 500 supercomputers [72]. For our im-
plementation of FSMonitor on object-based storage system, we select Ceph as it is one of the
most popular and open-source object stores, with companies such as Bloomberg, Cisco, and
Deutsche-Telekom using Ceph as their storage backend [5]. While our scalable monitor has
so far only been applied to Lustre and Ceph storage systems, its design makes it applicable
to other large-scale storage systems with metadata catalogs, such as IBM’s Spectrum Scale
and Gluster.

We evaluate FSMonitor on real-world deployments of both the Lustre file system and the
Ceph object store, and demonstrate its capabilities by using it to drive a research automation
system. Our experiments show that FSMonitor scales well on a 897 TB Lustre store, and a
8 TB Ceph store, where it is able to process and report 37 948 events per second on Lustre,
more than 2000 events per second on Ceph, while providing a standard event representation
on both storage systems. We also implement and evaluate a use case for FSMonitor, in the
form of a file system indexer that uses FSMonitor to improve the performance and efficiency
of metadata re-indexing.

5.2 Background

In this section, we describe parallel file systems and object-based storage. We focus specifi-
cally on the Lustre and Ceph storage systems supported by FSMonitor. We describe how the
Lustre Changelog metadata catalog and the Ceph metadata Journal can be used to detect
and report events.

56 Chapter 5. File System Monitoring for Large Scale Storage Systems

5.2.1 Parallel File System

A parallel file system is designed to stripe data blocks in parallel, across multiple storage
devices on multiple servers. Multiple clients can access a file system simultaneously and can
perform I/O operations on the various stripes of a file in parallel. Typically, it consists of
clients that read or write data to the file system, data servers where data is stored, metadata
servers that manage the metadata and placement of data on the data servers, and networks
to connect these components. This level of parallelism is transparent to the clients, for whom
it seems as though they are accessing a local file system. Therefore, important functions of a
parallel file system include avoiding potential conflict among multiple clients, and ensuring
data integrity and system redundancy.

Monitoring a parallel file system is challenging as events may be generated across various
components in the system and they then pass through one of several metadata servers.
Generally, the larger the data store, the more metadata servers required to manage the
cluster. Further, as a parallel file system aims to deliver transparent parallelism, it is crucial
that even the event monitoring mechanisms appear to users as if they are the same as a local
file system.

Lustre Parallel File System

As seen in the Chapter 3, Lustre is designed for high performance, scalability, and high avail-
ability. It employs a client-server network architecture. A Lustre deployment is comprised
of one or more Object Storage Servers (OSSs) that store file contents; one or more Metadata
Servers (MDSs) that provide metadata services for the file system and manage the Metadata
Target (MDT) that stores the file metadata; and a single Management Server (MGS) that
manages the system.

The Management Server (MGS) is responsible for storing the configuration information
for the entire Lustre file system. This persistent information is stored on the Management
Target (MGT). Metadata Servers (MDS) manages namespace operations and are responsible
for one Metadata Target (MDT). Namespace metadata, such as directories, filenames, file
layouts, and access permissions are stored in the associated MDT. Every Lustre file system
must have at least one MDT. A large file system may require more than one MDT to store
its metadata, and therefore, Lustre versions after 2.4 support a distributed namespace. A
distributed namespace means metadata can be spread across multiple MDTs. MDS0 and
MDT0 act as the root of the namespace, and all other MDTs and MDSs act as their children.

Lustre provides a Changelog to query the metadata stored in the MDT. Developers can
create a Changelog listener and subscribe to a specific MDT, allowing them to retrieve and
purge metadata records. FSMonitor uses the Lustre Changelog to keep track of file system
events.

5.2. Background 57

Object Storage Servers (OSS) store file contents. Each file is stored on one or more Object
Storage Targets (OST) mounted on an OSS. Applications access file system data via Lustre
clients which interact with OSSs directly for parallel file accesses. The internal high-speed
data networking protocol for Lustre file system is abstracted and is managed by the Lustre
Network layer.

5.2.2 Object Storage

Object storage [69] runs on the principle of assigning a unique identifier and metadata to
each piece of data to be stored in the system. These data units are accessed as objects rather
than a stream of bytes. Figure 5.1 shows how object-based storage model differentiates from
the traditional block-based model.

Figure 5.1: Comparison of block-based and object-based storage models.

In the traditional block-based storage model, the host operating system is responsible for
translating the data layout and application requests into logical block addresses. In the
object-based model, the responsibility of translation into block addresses is moved to the
object-based disk.

Therefore, data retrieval is much faster in the object-based storage model by forgoing the
need to traverse through the tiered architecture of traditional file systems and instead, stor-
ing all objects in a common storage. Typically, the metadata and data are segregated into
different logical pools to facilitate more efficient metadata driven operations on the sys-
tem. Object-based models are able to achieve high scalability and are appropriate in areas
requiring high data throughput, such as Internet-of-Things (IoT), and streaming services

58 Chapter 5. File System Monitoring for Large Scale Storage Systems

like Netflix [15]. We implement a FSMonitor interface for the Ceph object store, which is
explained below.

Ceph Object Storage

Ceph [201] storage is a popular object stores [4, 17]. Figure 5.2 shows its architecture.

Figure 5.2: An overview of Ceph architecture.

The primary component of Ceph’s infrastructure is the distributed object store - RADOS
(Reliable Autonomic Distributed Object Store). Data are stored as objects in logical groups
called pools. The metadata pool is separated from the data pools to aid faster execution
of metadata level operations, such as list and rename. The pools host logical namespaces
known as Placement Groups (PGs), which group objects into fragments within a pool. Each
placement group is mapped to a set of Object Storage Daemons (OSDs) where the final
placement of incoming data objects is done.

The Ceph client interacts with RADOS to store data by providing the object name and the
pool name using the Ceph object gateway. The interaction between the Ceph client and the
OSDs is coordinated by Metadata Servers (MDSs), placed in the metadata pool. Each MDS
maintains a Journal to assimilate the series of metadata level manipulations made to the
storage system. FSMonitor uses the MDS Journal to collect file system events from Ceph.
All metadata operations go through the Ceph Monitor, which is used to maintain a cluster
map, that is consulted by the Ceph client. The cluster map is a collection of the Monitor
map, OSD map, PG map, and MDS map. To ensure that Ceph does not succumb to a single
point of failure, Ceph tries to attain a decentralized architecture by allowing multiple MDSs
and Monitors in the cluster. The implementation of FSMonitor is done atop the Ceph File
System (CephFS), which is built on top of RADOS. It is POSIX compliant with a traditional
file system interface.

5.2. Background 59

5.2.3 Monitoring Storage System Events

Most storage systems maintain a catalog for recording file system events. For example,
Lustre maintains a Changelog, Ceph a Journal, IBM Spectrum Scale [168] a file audit log
(mmaudit), and GlusterFS [79] a libgfchangelog to track metadata events. As FSMonitor

is implemented atop Lustre and Ceph file systems, we explain Lustre Changelog and Ceph
Journal below. Lustre and Ceph are representative of other parallel file systems and object
stores, and thus FSMonitor can be extended to build a monitoring solution for other large-
scale storage systems as well.

Lustre Changelog

ID Type Time Date Flags Target FID Parent FID Target
11 01CREAT 21:18:47.30 2020.06.20 0x0 t=[0x5716:0x626c:0x0] p=[0x5716:0xe7:0x0] hello.txt
12 17MTIME 21:18:47.32 2020.06.20 0x7 t=[0x5716:0x626c:0x0] hello.txt
13 08RENME 21:18:47.41 2020.06.20 0x1 t=[0x5716:0x17a:0x0] p=[0x5716:0xe7:0x0] hello.txt

s=[0x5716:0x626b:0x0]
sp=[0x5716:0x626c:0x0] hi.txt

14 02MKDIR 21:18:47.42 2020.06.20 0x0 t=[0x5716:0x626d:0x0] p=[0x5716:0xe7:0x0] okdir
15 06UNLNK 21:18:47.43 2020.06.20 0x0 t=[0x5716:0x626b:0x0] p=[0x5716:0xe7:0x0] hi.txt

Table 5.1: A sample Lustre ChangeLog record showing Create File, Modify, Rename, Create
Directory, and Delete File events.

Table 5.1 shows sample records in Lustre’s Changelog. We run a script and see the events
recorded in the Changelog. The script first creates and then modified a file, hello.txt and
then renames the file to hi.txt. A directory named okdir is then created. Finally, it deletes
the file.

Each tuple in Table 5.1 represents a file system event, specified via a EventID (record number
for the Changelog entry), Type (file system event type), Timestamp, Datestamp (date and
time of the event occurrence), Flags (masking for the event), Target FID (file identifier of
the target file/directory on which the event occurred), Parent FID (file identifier of the
parent directory of the target file/directory), and Target Name (the file/directory name that
triggered the event). It is evident that the Parent and Target FIDs need to be resolved to
their original names before they can be sent to the client. The following event types are
recorded in the Changelog:

• CREAT: Creation of a regular file.

• MKDIR: Creation of a directory.

• HLINK: Hard link.

• SLINK: Soft link.

60 Chapter 5. File System Monitoring for Large Scale Storage Systems

• MKNOD: Creation of a device file.

• MTIME: Modification of a regular file.

• UNLNK: Deletion of a regular file.

• RMDIR: Deletion of a directory.

• RENME: Rename a file or directory from.

• RNMTO: Rename a file or directory to.

• IOCTL: Input-output control on a file or directory.

• TRUNC: Truncate a regular file.

• SATTR: Attribute change.

• XATTR: Extended attribute change.

Note in Table 5.1 that Target FIDs are enclosed within t = [], and parent FIDs within
p = []. MTIME event does not have a parent FID. RENME event has additional FIDs,
s = [] denoting a new file identifier to which the file has been renamed, and sp = [] gives
the file identifier for the original file. These features are important when resolving FIDs.

Ceph Journal

EventID Type ctime dentry Root dentry dirHash
0x8a6422d8 openc 2020-06-20 22:44:25.425743 full bits = hello.txt /mnt/mycephfs 0
0x8a6428e7 cap update 2020-06-20 22:44:28.159760 full bits = hello.txt /mnt/mycephfs 0

0x8a642efb rename 2020-06-20 22:44:51.226914
full bits = hi.txt
null bits = hello.txt

/mnt/mycephfs 0

0x8a643534 mkdir 2020-06-20 22:44:59.111970 full bits = okdir /mnt/mycephfs 2

0x8a643c5d unlink local 2020-06-20 22:45:07.665030
full bits = stray3
null bits = hi.txt

/mnt/mycephfs 0

Table 5.2: A sample Ceph Journal record showing Create File, Modify, Rename, Create
Directory, and Delete File events.

Table 5.2 shows the sample records saved in a Ceph Journal when we run the same script as
for generating the Lustre Changelog, shown in Table 5.1. Each row in Table 5.2 represents
an event in the object store. Every row consists of an EventID (journal entry number), Type
(type of file system event), ctime (date and timestamp when the event occurred), dentry
(file or directory name on which the event occurred), Root dentry (parent directory name for
the dentry file or directory), and dirHash (an identifier to check if the dentry is a directory).
In file systems, an inode (index node) contains information about a file. A dentry (directory
entry) is used to keep track of the hierarchy of files in directories. Each dentry maps an

5.2. Background 61

inode number to a file name and a parent directory. For file system events where an inode
entry is removed from the system, dentry has entries for full bits and null bits. For example,
when hello.txt is renamed to hi.txt, the dentry value for full bits is hi.txt, and dentry value
for null bits is hello.txt. Similarly, when file hi.txt is deleted, null bits value in dentry is
hi.txt. The value for dirHash is non-zero when full bits of dentry points to a directory.

It should be noted from Tables 5.1 and 5.2 that there is no standard representation for a
file system event in parallel file systems and object stores. A file creation event in Lustre is
recorded as 01CREAT, while in Ceph, it is recorded as openc. Similarly, a file modification
event is 17MTIME in Lustre and cap update in Ceph; a file or directory rename event is
08RENME in Lustre and rename in Ceph; a directory creation event is 02MKDIR in Lustre and
mkdir in Ceph; and a file deletion event is 06UNLNK in Lustre and unlink local in Ceph.
Thus a scalable monitor is needed that can create a standard representation of file system
events.

5.2.4 Prior Work

Monitoring file system events in large scale storage systems needs specialized tools. For object
storage systems, there is no such tool which is widely used. Oral et al. [143] developed an
efficient object storage journaling tool for a distributed parallel file system. They however
focused on a hardware solution by using external journals on solid state devices. FSMonitor
focuses on providing a generic software solution that can work on all storage infrastructure.
Another monitoring tool [53] was developed for the ATLAS project [1] which uses a scalable
publisher-subscriber model to record metadata events. This work is however specific to the
ATLAS project. FSMonitor uses the pub-sub model from this work to make the monitoring
solution scalable as well as generic.

Lustre Client

Robinhood Server

Lustre MDS

MDT

Database

MDT

Lustre MDS

. . . .

Figure 5.3: Robinhood architecture.

The Lustre file system has some specialized tools [133] for metadata event monitoring, of
which Robinhood [107] is the most widely used. The Robinhood Policy Engine is capable
of collecting events from Lustre file systems and using them to drive a policy engine to
automate data management tasks, such as purging old files. Its architecture is shown in
Figure 5.3. Robinhood uses an iterative approach to collect event data from metadata

62 Chapter 5. File System Monitoring for Large Scale Storage Systems

servers. A Robinhood server runs on the Lustre client and queries each MDS for events
by querying the Changelogs. It then saves the events in a database on the Lustre client.
For multiple MDSs, Robinhood polls the MDSs sequentially, in a round robin fashion. In
contrast, FSMonitor employs a high performance message queue to concurrently collect,
report, and aggregate events from all MDSs. This approach allows FSMonitor to far exceed
Robinhood event collection performance, as we will show in Section 5.4.3.

Summary: There is a need for a general event monitoring solution that can be applied
to various storage systems including both parallel file systems (such as Lustre) as well as
object-based storage systems (such as Ceph). The monitor needs to have a standard event
representation. In FSMonitor, we standardize all event representations to the inotify [115]
format from Linux, as this is the most widely used representation in industry [10]. The
monitor also needs to be scalable so as to be able to capture all the events in a large-scale
storage system. We implement FSMonitor for the Lustre file system and Ceph object store.

5.3 FSMonitor System Design

Existing monitoring solutions for local file systems (Linux, macOS) cannot be extended to
distributed environments and existing solutions for parallel file systems cannot be generally
applied to different storage systems. FSMonitor provides a standard event detection interface
across all large scale storage systems, and extends the reliability of the underlying event
detection system by providing increased resiliency. FSMonitor is designed to be applied to
arbitrary large scale storage systems through a modular data storage interface which can be
implemented to connect to arbitrary event interfaces (parallel file system and object stores).
It provides a standardized API to collect and process file system events, and is a scalable and
high-performance system that is capable of detecting many thousands of events per second.

5.3.1 Logical View of FSMonitor

Figure 5.4 illustrates the three-layer architecture of FSMonitor. The Data Storage Interface
(DSI) layer provides an abstraction for interfacing with different storage systems. The res-
olution layer is used to process events and standardize their format, and the interface layer
enables client users and programs to communicate with FSMonitor. Here we describe each
of these layers in detail, explaining their design and capabilities.

Data Storage Interface Layer

The lowest level of FSMonitor is responsible for interfacing with the underlying storage
system to capture events and report them to the resolution layer for processing. We employ

5.3. FSMonitor System Design 63

Figure 5.4: FSMonitor architecture, showing the interface, resolution, and DSI layers.

a modular architecture via which arbitrary monitoring interfaces can be integrated into
FSMonitor. We provide a set of DSIs to interface with parallel file systems and object storage
systems. Our DSI layer is responsible for selecting the appropriate catalog to monitor for
the given storage device (Changelog in Lustre, and Journal in Ceph). After the events have
been collected, they are propagated to the resolution layer.

Resolution Layer

The resolution layer is responsible for reliably recording and aggregating events from the DSIs
and then reporting these events to the interface layer. This layer includes a queue to receive
and manage events until they are processed. As events are received from a DSI plug-in, they
are immediately placed in the processing queue. The events are then processed to resolve
and dereference paths such that events can be transformed into various representations. This
step is explained in Section 5.3.2. Rather than defining yet another event representation, we
instead transform all events into the widely used inotify event representation format. Thus,
FSMonitor provides a generalized event representation for all large scale storage systems.
The resolution layer also provides optimizations that improve the overall event processing
performance, such as caching and batching capabilities.

64 Chapter 5. File System Monitoring for Large Scale Storage Systems

Interface

The topmost layer provides an interface for users and programs to interact with FSMonitor.
This layer is responsible for reporting events and replying to requests. Programs can use
the interface to capture events as they happen. The interface layer also provides batching
capabilities to report events in groups. If an event identifier is provided, FSMonitor only
reports events that have occurred since that event. To provide fault tolerance, this layer
also stores all events received from the resolution layer into an event store (database). In
the event of failures, after client recovery, once events have been retrieved from FSMonitor,
they are flagged as having been reported and can be removed from the database. The size
of this database is configurable and can be adjusted depending on the resources available to
FSMonitor.

5.3.2 Storage System View of FSMonitor

Figure 5.5 illustrates a deployment of FSMonitor on large scale storage systems. Our monitor
uses a publish-subscribe model, where the metadata is acquired from each MDS’s metadata
catalog via a collector, processed and cached, then published to the aggregator. The ag-
gregator gathers events from each collector for later consumption. The publish-subscribe
model provides for scalable event collection, as proven for monitoring Lustre server statis-
tics [150, 152, 196]. The aggregator, and collector components are part of the architecture
of FSMonitor.

Therefore, mapping the logical view of FSMonitor with its storage system view, we have the
DSI layer on collectors, resolution layer comprises of both collectors and aggregator, and the
interface layer spanning part of aggregator and the consumers. For parallel file systems like
Lustre, the collector service is placed on the MDSs, the aggregator service on the MGS, and
the consumers are the file system clients. This is also similar to object storage systems, like
Ceph, where the collector service is on the MDSs in the metadata pool, aggregator service is
on the monitor, and the consumers consist of the object storage clients. We divide the overall
storage system design of FSMonitor into four steps: Detection, Processing, Aggregation, and
Consumption. We describe each step below.

Detection: Each collector service is responsible for extracting file system events from one
MDS metadata catalog. Deploying collectors on individual MDSs enables every MDS to
be monitored in parallel. The collector is responsible for detecting the type of storage
system: either parallel file system or object-based storage. The collector monitors the catalog
(Changelog in Lustre, and Journal in Ceph) and for every new event that is extracted from
the local metadata catalog, the event needs to be processed before it can be published to
the aggregator.

Processing (Lustre): We explain first the processing step for Lustre. As seen in Sec-
tion 6.2.4, every event in the Lustre Changelog is associated with either a target or a parent

5.3. FSMonitor System Design 65

Figure 5.5: Infrastructural view of FSMonitor.
On Lustre: Collectors=MDSs, Aggregator=MGS, Consumers=Lustre Clients.
On Ceph: Collectors=MDSs, Aggregator=Monitor, Consumers=Ceph Clients.

file identifier (FID), or both. However, these FIDs are not necessarily interpretable by ex-
ternal applications, and thus must be processed and resolved to absolute path names.

The Lustre fid2path tool resolves FIDs to absolute path names. Whenever a new file system
event is detected by a collector, we use this tool to convert raw event tuples into application-
friendly file paths when the event is being published. However, the fid2path tool is slow and
can delay the reporting of events. For example, in Section 5.4.3 we show that this delay
can cause a decrease of 14.9% in the event reporting rate. To minimize this overhead, we
implement a Least Recently Used (LRU) Cache in the aggregator to store mappings of FIDs
to source paths.

Algorithm 7 shows the aggregator’s processing steps for a Lustre Changelog. Events are
processed in batches. The cache is used to resolve FIDs to absolute paths. Whenever an
entry is not found in the cache, we invoke the fid2path tool to resolve the FID and then
store the mapping (fid – path) into the LRU cache. In the case of UNLNK and RMDIR events,
resolving target FIDs will give an error because that FID has already been deleted by the
file system. Therefore, parent FIDs need to be resolved. If resolving parent FID raises an
error, it means the parent directory has also been deleted. FSMonitor resolves this and gives
the event as ‘ParentDirectoryRemoved’. As seen in Section 6.2.4, RENME events are provided
with the old path (sp = []) and new path FIDs (s = []). Therefore, for RENME events, instead
of target FID, old path and new path FIDs need to be resolved. Finally, events are published
to the aggregator.

After processing a batch of file system events from the Lustre Changelog, the collector will
purge the Changelogs. A pointer is maintained to the most recently processed event tuple
and all previous events are cleared from the Changelog. This helps reduce the overburdening

66 Chapter 5. File System Monitoring for Large Scale Storage Systems

of the Changelog with stale events.

Algorithm 4: Processing Lustre Changelog events.
Input: Lustre path lpath, Cache cache, MDT ID mdt
Output: EventList
while true do

events = read events from mdt Changelog
for event e in events do

resolvedEvent = processEvent(e)
EventList.add(resolvedEvent)

Clear Changelog in mdt
return (EventList)

Function processEvent
Input: Event e
Output: resolvedEvent
Extract event type, time, date from e
try:

path = cache.get(targetFID)
if targetFID not found in cache then

path = fid2path(targetFID)
cache.set(targetFID, path)

catch fid2pathError:
try:

if event type is UNLNK or RMDIR then
path = cache.get(parentFID)
if parentFID not found in cache then

path = fid2path(parentFID)
cache.set(parentFID, path)

else if event type is RENME then
oldpath = cache.get(oldFID)
newpath = cache.get(newFID)
if oldFID not found in cache then

oldpath = fid2path(oldFID)
cache.set(oldFID, oldpath)

if newFID not found in cache then
newpath = fid2path(newFID)
cache.set(newFID, newpath)

catch fid2pathError:
if event type is UNLNK or RMDIR then

path = ParentDirectoryRemoved

resolvedEvent.add(event type, time, date,
path/oldpath&newpath)

return (resolvedEvent)

Processing (Ceph): Algorithm 5 shows the steps taken by the collector to process events
from the Ceph Journal. Every event in the Journal is processed. As seen in Section 5.2.3,

5.3. FSMonitor System Design 67

each event is associated with the event type, date and timestamp, dentry full and null bits,
root dentry full and null bits, and directory hash. The values for all of these parameters are
extracted from each file system event. If the event is a rename event, both old and new
paths are extracted from the null and full bits of dentry, respectively. If the event is a delete
event, path is set as the null bits in dentry. If null bits in root dentry exists, then, the event
was a recursive deletion event. The directory hash value is also checked and isDirectory
parameter is set as True if the hash value is non-zero.

Algorithm 5: Processing Ceph Journal events.
Input: Ceph File System Name cephfs, MDS Rank mds
Output: EventList
while true do

events = read events from mds Journal in cephfs
for event e in events do

resolvedEvent = processEvent(e)
EventList.add(resolvedEvent)

Clear Journal in mds
return (EventList)

Function processEvent
Input: Event e
Output: resolvedEvent
Extract event type, ctime, dentry, root dentry, dirHash from e
path = root dentry.concat(dentry)
isDirectory = False
if event type is rename then

oldpath = root dentry.concat(dentry nullbits)
newpath = root dentry.concat(dentry fullbits)

else if event type is unlink local then
path = root dentry.concat(dentry nullbits)
if root dentry has nullbits then

path = ParentDirectoryRemoved

if dirHash ! = 0 then
isDirectory = True

resolvedEvent.add(event type, ctime,
path/oldpath&newpath, isDirectory)

return (resolvedEvent)

After events are processed by the collector, they are sent for aggregation.

Aggregation: Collectors use a publish-subscribe communication pattern (implemented with
ZeroMQ [86]) to report events to an aggregator. When an event arrives to the aggregator it
is placed in a processing queue. The aggregator service is multi-threaded, where one thread
is responsible for publishing the aggregated file system events to the subscribed consumers,
and the other thread stores the events into a local database to enable fault tolerance. This
ensures minimal overhead on the system. An API is provided to the consumers to retrieve
historic events from the database whenever a fault occurs. For our implementation, we use
MySQL as the reliable event store.

68 Chapter 5. File System Monitoring for Large Scale Storage Systems

Consumption: Consumers act as subscribers to the aggregator which publishes the events.
The consumer service has the following three responsibilities.

Event filtering : Whenever a new event arrives to the consumer it filters the events and only
passes on events related to those files and directories requested by the application. This
filtering of events is not done at the aggregator in order to alleviate potential overheads if
many consumers were to ask to monitor different files and directories.

Standard event representation: Before a new event is sent to the client application, event
types are standardized according to the inotify format of file system event representation.
This provides a generic monitoring solution for any large-scale storage system.

Fault tolerance: The consumer service is also responsible for retrieving events for a particular
time stamp from the aggregator’s reliable event store, in the situation that a consumer fails.
Once retrieved, events are flagged as having been reported and can be removed from the
data store when the next data purge cycle is initiated.

5.4 Evaluation

To evaluate the performance and overhead of FSMonitor, we have deployed FSMonitor on
multiple Lustre parallel file system and Ceph object store platforms. Here we first describe
these testbeds and the workloads that we use for evaluating FSMonitor performance, and
then present our evaluation results.

5.4.1 Experimental Setup

We employ various testbeds to evaluate FSMonitor on both parallel file systems and object
storage systems.

Parallel File System

We evaluate FSMonitor on three testbeds running Lustre.

AWS is a deployment of Lustre on five Amazon Web Service EC2 instances. We build a
20 GB Lustre file system using Lustre Intel Cloud Edition v 1.4 on five t2.micro instances
and an EBS volume. Our Lustre configuration for AWS includes one MDS, one MGS, one
OSS with one OST and two compute nodes.

Thor is a deployment at the Distributed Systems and Storage Laboratory (DSSL) at Virginia
Tech. Each node in the setup has an 8-core processor, 16 GB memory and 512 GB storage.
We deploy Lustre version 2.10.3 with one MGS, one MDS, seven OSSs each having five OSTs

5.4. Evaluation 69

and two Lustre clients. Every OST is a 10 GB volume, resulting in a total of 350 GB Lustre
store.

Iota is a production 897 TB Lustre deployment on a pre-exascale system at Argonne National
Laboratory. This deployment has the same configuration and performance as the 150 PB
store to be deployed on the Aurora supercomputer [2] at Argonne. The configuration includes
Lustre’s DNE with four MDSs. Iota has 44 compute nodes, each with 72 cores and 128 GB
memory.

Object-based storage System

We evaluate FSMonitor on a Ceph testbed running Ceph version 10.2.11, with one admin
node, one monitor, one client, one MDS, and two OSDs each with 4 TB object store. The
MDS is placed in a metadata pool, and the two OSDs form one data pool. The admin and
monitor nodes each have an 8-core Intel Xeon processor and 48 GB memory. The MDS and
OSD nodes each have a 16-core Intel Xeon processor with 48 GB memory, and the Ceph
client node has an 8-core Intel i7-6700 processor with 32 GB memory.

5.4.2 Experiment Workloads

We use a range of workloads to evaluate performance on the various testbeds. Specifically, we
use one synthetic benchmark, Evaluate Performance Script ; two real-world metadata bench-
marks, MDTest and FS Mark ; and two real-world data benchmarks, InterleavedOrRandom
and FS Mark.

We run the synthetic benchmark on all three Lustre testbeds and the one Ceph testbed, and
the metadata and data benchmarks on the Ceph testbed and Thor Lustre testbed. We run
each experiment five times and report the mean values of the five runs.

Synthetic Benchmark

We use the Evaluate Performance Script synthetic benchmark to measure baseline perfor-
mance. This benchmark repeatedly creates, modifies, and deletes a file hello.txt, in an infinite
loop. This script thus tests FSMonitor efficiency over a period of time and can be used to
evaluate FSMonitor’s resource utilization and event reporting rate. This script is also used
as a baseline for event reporting in both Lustre file system and Ceph object store.

70 Chapter 5. File System Monitoring for Large Scale Storage Systems

Metadata Benchmark

We use two metadata benchmarks to evaluate FSMonitor scalability and performance while
reporting metadata events.

MDTest [13] measures the metadata performance of a file system. It works by creating,
stating, and deleting a tree of directories and files in parallel across multiple clients in large
scale storage systems. The MDTest benchmark generally exceeds application requirements
for file systems and is therefore an appropriate benchmark to evaluate scalability and per-
formance of FSMonitor. We run MDTest benchmark by varying the directory tree depth
and the number of files. We ran MDTest five sets of values of files-per-directory: 300, 700,
3100, 11 100, and 42 100.

FS Mark [8] tests synchronous write workloads, simulating workloads such as mail servers by
performing multiple creations and writes of files across different directories. We ran FS Mark
for 1 million files.

Data Benchmark

In order to test the generality in event representation across parallel file systems and object
stores, and to evaluate the impact on the I/O performance of applications under FSMonitor,
we use two real-world data benchmarks.

The InterleavedOrRandom (IOR) [121] benchmark provides a flexible way to measure a
distributed file system’s I/O performance. It measures performance with different parameter
configurations, including I/O interfaces ranging from traditional POSIX to advanced parallel
I/O interfaces like MPI-I/O. It performs reads and writes to and from files on large scale
storage systems, and calculates the throughput rates. For our evaluation of FSMonitor, IOR
is executed with single shared file mode writing a 32 GB file with 8 processes.

The HACC-I/O is based on the Hardware Accelerated Cosmology Code (HACC) [120] appli-
cation, which uses N-body techniques to simulate the formation of structure in collision-less
fluids under the influence of gravity in an expanding universe. HACC-I/O captures the I/O
patterns of the HACC simulation code. It uses the MPI-I/O interface and differentiates
between FPP and SSF parallel I/O modes. We run HACC-IO for 10 million particles in
file-per-process mode with 8 processes for our evaluation of FSMonitor.

5.4.3 Evaluating FSMonitor Using Synthetic Benchmark

We now explore FSMonitor’s performance when deployed on Lustre and Ceph using the
synthetic benchmark Evaluate Performance Script.

5.4. Evaluation 71

Event capture rate

We first form a baseline throughput for Lustre and Ceph on each of the four testbeds: AWS,
Thor, Iota, and Ceph. We use Evaluate Performance Script and record the number of events
generated per second. As shown in Table 5.3, for Lustre, AWS performs the worst, as its
Lustre testbed is formed from t2.micro instances. Thor performs better than AWS and, as
expected, Iota’s performance is the best of the three. For Ceph, the event generation rates
are similar to that of the Thor testbed for Lustre.

Lustre Ceph
AWS Thor Iota: 1 MDS

Storage Size 20 GB 350 GB 897 TB 8 TB
Create events/sec 352 746 1389 802
Modify events/sec 534 1347 2538 653
Delete events/sec 832 2104 3442 824
Total events/sec 1366 4509 9593 2086

Table 5.3: Baseline Event Generation Rates.

In our experimental setup, AWS, Thor, and Ceph have one MDS each, and Iota has four
MDSs. However, for comparison purposes we present event generation rates in Table 5.3
using only a single MDS on all setups. As AWS, Thor, and Ceph have only one metadata
catalog, FSMonitor extracts their events from only one MDS Changelog/Journal, processes
them, and then communicates them to the aggregator for reporting to the client. On Iota,
events are generated from all four MDSs and thus need to be collected from all the MDSs
and then aggregated on the MGS before they are sent to the consumer.

Event Reporting Analysis

Lustre Ceph
AWS Thor Iota

Generated events/sec 1366 4509 9593 2086
Reported events/sec without cache 1053 3968 8162 2079
Reported events/sec with cache 1348 4487 9487 2079

Table 5.4: Baseline Event Reporting Rates.

When FSMonitor is deployed on Lustre, the resolution layer applies a caching mechanism
to cache fid2path key-value pairs. To investigate the benefits of this approach we record the
number of events captured per second with and without caching. Our results are shown in
Table 5.4. We also include the baseline event generation rate from our previous experiment
(Table 5.3).

For Lustre, when FSMonitor is used to report these events without caching the fid2path
resolutions, the AWS -based FSMonitor can collect, process, and report only 1053 events per
second. On Iota, it reports only 8162 events per second: 14.9% lower than the generation rate

72 Chapter 5. File System Monitoring for Large Scale Storage Systems

of ∼9500 events per second. When we analyze the FSMonitor event reporting pipeline, we
notice that the performance is limited primarily in the processing of events after extracting
them from the Lustre Changelog in the MDS. These results confirm that fid2path is costly
and that execution for every event reduces overall throughput. In Ceph, we do not notice
a difference in event reporting with or without cache, because FSMonitor on Ceph does not
have to go through the fid2path resolution process.

For the implementation of FSMonitor on Lustre, we use an in-memory LRU cache to store
the fid2path mappings. The size of the cache (number of fid2path mappings) is selected to be
5000 (we explore different cache sizes in Section 5.4.3). With the use of an in-memory cache,
FSMonitor is able to to report 1348 events per second on AWS, 4487 events per second on
Thor, and 9487 events per second on Iota.

The above results all use one MDS. On Iota, when we use all four available MDSs, the
overall event generation rate is 38 372 events per second. FSMonitor is able to report 37 948
events per second to the consumer with caching enabled. Note that besides processing and
filtering events, there is no additional overhead in the collection, aggregation, and reporting
of events by FSMonitor. The difference between event reporting and event generation rates
is due to the minimal processing required in FSMonitor. There is no loss of events; events
are queued and simply processed at a slower rate than they are generated. As FSMonitor

on Ceph requires much lesser processing of events than FSMonitor on Lustre, FSMonitor’s
event loss rate is much lower for Ceph than Lustre.

Resource Utilization

We evaluate the resource utilization of every component of FSMonitor.

Evaluate Performance Script is used to perform this analysis. Tables 5.5 and 5.6 show the
peak CPU and memory utilization respectively on each of our four testbeds. From the
results, it is evident that the CPU and memory costs of operating FSMonitor are low.

We show collector’s resource utilization both with and without a cache. The reduction in
CPU utilization for FSMonitor in Lustre when caching is enabled is due to the lower number
of fid2path invocations. For FSMonitor in Ceph, we see no difference in resource utilization
due to caching because the fid2path invocations are not required in Ceph.

Next, we modified Evaluate Performance Script to create and delete, but not modify, files
continuously. We noticed that the Collector service on Iota had a CPU usage of 3.3%: a
14.2% increase in CPU usage from 2.89%, when Evaluate Performance Script was tested.
This is because delete events caused the fid2path mapping in the cache to fail for most events,
resulting in fid2path calls on the parent directory. Memory usage did not change significantly.

We also changed Evaluate Performance Script to only create and modify, not delete, files.
CPU usage in this case for Iota was 2.3%: a decrease of 20.4% from 2.89% when testing Eval-

5.4. Evaluation 73

uate Performance Script. This is because more frequent mappings in the cache were found.
Even in this scenario, memory usage did not differ significantly. The resource utilization of
the Aggregator and Consumer stays the same even when caching is enabled.

CPU%
AWS Thor Iota Ceph

Collector - No cache 9.3 7.8 6.7 1.4
Collector with cache 6.6 1.5 2.9 1.4

Aggregator 2.7 0.6 0.1 0.4
Consumer 1.5 0.2 0.1 0.1

Table 5.5: FSMonitor CPU Utilization.

Memory (MB)
AWS Thor Iota Ceph

Collector - No cache 8.2 33.7 81.6 10.5
Collector with cache 9.9 25.7 55.4 10.5

Aggregator 5.7 7.2 17.6 5.2
Consumer 0.1 0.2 2.8 0.2

Table 5.6: FSMonitor Memory Utilization.

Therefore, deploying FSMonitor on Lustre parallel file system (MDS, MGS and clients), and
Ceph object store (MDS, Monitor and clients), would result in a negligible overload on the
overall performance.

Caching

In order to calculate the optimum size for the in-memory LRU cache, we ran FSMonitor

on Iota with Evaluate Performance Script and varied the cache size before every run. The
results are shown in Table 5.7. We do not show the results from Ceph, because FSMonitor

has negligible impact of caching in Ceph object store.

Cache Size
(#fid2path)

CPU%
on collector

Memory (MB)
on collector

Events/sec reported
by each collector

200 4.8 88.7 8644
500 3.5 84.3 8997
1000 3.0 75.6 9401
2000 3.0 61.3 9453
5000 2.9 55.4 9487
7500 2.9 60.7 9481

Table 5.7: FSMonitor performance vs. cache size.

The total number of events generated per second on Iota for one MDS is 9593, see in
Table 5.3. As seen in Table 5.7, we observe improved performance using the in-memory LRU
cache with size greater than or equal to 1000. For sizes 200 and 500, memory utilization

74 Chapter 5. File System Monitoring for Large Scale Storage Systems

on collector is even worse than than in FSMonitor without cache on Iota. The lowest CPU
and memory utilization for Collector on Iota is for cache size 5000. Also, the number of
events reported per second on one MDS is best for cache size of 5000. Increasing the cache
size further to 7500 results in worse performance. Therefore, for our evaluation, we choose
a cache size of 5000.

Comparison with Robinhood

There is no scalable file system event monitoring solution for object storage systems. How-
ever, for the Lustre parallel file system, there is a widely used monitoring tool, Robin-
hood [133], explained in Section 5.2.4. We compare FSMonitor with Robinhood on Iota
with four MDSs.

We implement Robinhood [107] by having a subscriber in the client that polls the four
publishers on the MDS one at a time in a round-robin fashion. There is no role for MGS in
this implementation. In comparison, FSMonitor has an aggregator service on MGS that polls
all MDSs concurrently and pushes all events in a single queue to the clients. We evaluate
performance by comparing the number of events per second received and processed at the
client side by Robinhood vs. the number of events collected by the client via FSMonitor where
the processing takes place at the MDSs and aggregation at the MGS. Our results show that
Robinhood on Iota processes an average 7486 events per second from each MDS vs. 9847
events per second by FSMonitor. Combining all four MDSs, Robinhood processes 32 459
events per second in comparison to 37 948 events per second with FSMonitor. Therefore,
with the advent of exascale supercomputers, where multiple MDSs on large-scale storage
systems will be common, parallel monitoring is necessary.

5.4.4 Evaluating FSMonitor Using Metadata Benchmarks

We evaluate FSMonitor by running real-world metadata benchmarks MDTest and FS Mark.
For Lustre, we run the benchmarks on Thor.

Figure 5.6 shows the MDTest event generation rate and FSMonitor event reporting rate
on Lustre and Ceph, respectively. We test scalability of FSMonitor by running MDTest
from 300 files per directory to 42 100 files per directory. MDTest tests four event types:
create directory (MKDIR), remove directory (RMDIR), create file (CREATE), and delete
file (UNLINK). We see negligible difference in the event reporting rates, demonstrating
FSMonitor scalability.

Figure 5.7 shows results for the FS Mark metadata benchmark on Lustre and Ceph, respec-
tively. FS Mark evaluates metadata operations by creating (CREATE), writing (MODIFY),
closing (CLOSE), and deleting (UNLINK) ten million files. As seen from the graphs, there
is a negligible difference in the event reporting rate by FSMonitor, which is caused due to

5.4. Evaluation 75

Figure 5.6: Performance of FSMonitor when running MDTest on Lustre (left) and Ceph
(right).

Figure 5.7: Performance of FSMonitor when running FS Mark on Lustre (left) and Ceph
(right).

the processing of events from the metadata catalog on the MDSs.

Thus, FSMonitor is scalable and is able to perform well on metadata stress testing.

5.4.5 Evaluating FSMonitor Using Data Benchmarks

We evaluate the impact of FSMonitor on large-scale HPC applications by running HACC-
I/O and IOR on Thor and Ceph. We run both workloads simultaneously on the clients
to see the impact of FSMonitor on concurrent running applications. We first evaluate the
event representation on Thor and Ceph, which can be seen in Table 5.8. FSMonitor is able
to provide the same event representation as inotify for both parallel file systems and object
stores. As IOR was executed in single-shared-file mode, only single instances of Create and
Delete file events were generated from IOR. HACC-I/O on the other hand was run in file-
per-process mode for 8 processes. Therefore, 8 files were created and deleted. We did not
notice any delay in the event reporting procedure by FSMonitor when the two workloads
were executing simultaneously.

76 Chapter 5. File System Monitoring for Large Scale Storage Systems

FSMonitor events
/mnt/lustre CREATE /hacc-io/FPP1-Part00000000-of-00000007.data
/mnt/lustre CREATE /hacc-io/FPP1-Part00000007-of-00000007.data

/mnt/lustre CLOSE /hacc-io/FPP1-Part00000000-of-00000007.data
/mnt/lustre CLOSE /hacc-io/FPP1-Par00000007-of-00000007.data

/mnt/lustre CREATE /ior/src/testFileSSF
/mnt/lustre CLOSE /ior/src/testFileSSF

/mnt/lustre DELETE /hacc-io/FPP1-Part00000000-of-00000007.data
/mnt/lustre DELETE /hacc-io/FPP1-Part00000007-of-00000007.data

/mnt/lustre CLOSE /hacc-io/FPP1-Part00000000-of-00000007.data
/mnt/lustre CLOSE /hacc-io/FPP1-Part00000007-of-00000007.data

/mnt/lustre DELETE /ior/src/testFileSSF
/mnt/lustre CLOSE /ior/src/testFileSSF

Table 5.8: FSMonitor events for IOR and HACC-IO on Thor and Ceph.

Next, we measure the impact of running HACC-IO with and without FSMonitor. The result
is shown in Table 5.9. The read and write performance of HACC-IO are not impacted when
FSMonitor is turned on in either the Lustre parallel file system or Ceph object store. We
see similar results for IOR, as shown in Table 5.10.

HACC-IO
without FSMonitor with FSMonitor

Lustre Ceph Lustre Ceph
Read Bandwidth (MB/s) 1069.9 2157.8 1002.5 2085.5
Write Bandwidth (MB/s) 128.0 1005.2 138.9 1033.2

Table 5.9: Impact of running FSMonitor with HACC-IO.

IOR
without FSMonitor with FSMonitor

Lustre Ceph Lustre Ceph
Read Bandwidth (MB/s) 853.4 2686.4 871.1 2690.0
Write Bandwidth (MB/s) 239.4 575.3 272.4 616.2

Table 5.10: Impact of running FSMonitor with IOR.

5.5 An Illustrative Application Use Case

FSMonitor enables the development of various event-driven applications. As an illustrative
example, we describe a file system indexer that uses FSMonitor to reduce re-indexing time.

5.5. An Illustrative Application Use Case 77

Figure 5.8: Overall design of file system indexer using FSMonitor.

As storage systems evolve to manage hundreds of petabytes and even exabytes of data, the
cost of indexing the data is becoming increasingly prohibitive. Improved techniques are
required to index file system data as hundreds of users concurrently create, modify, move,
and delete data. Event-based indexing is necessary to enable flexible management of these
extreme-scale stores.

Figure 5.8 shows the design of a file system indexer that uses FSMonitor to improve perfor-
mance. The indexer and crawler are responsible for crawling the entire file system, collecting
inode details from the metadata servers and indexing the file system metadata. This pro-
cess takes hours for a petabyte scale file system. Therefore, there is a need for an effective
re-indexer to update the indexed data. FSMonitor interacts with the metadata catalog to
create a suspect file listing all directories on which file systems events occurred from a par-
ticular client. The re-indexer collects the list of these suspect directories periodically from
the suspect file and indexes only these directories. We thus save the cost of crawling the
entire file system to track changes.

#Files #Directories Avg #Files per Dir Total Size (GB)
400 254 (400k) 43 189 9.3 4.4

1 200 762 (1.2M) 129 565 9.3 13.3
5 736 974 (5.7M) 619 029 9.3 63.4
8 530 405 (8.5M) 815 753 10.5 95.1
22 013 970 (22M) 2 375 341 9.3 243.2

Table 5.11: File system workload to evaluate re-indexer.

We implement the re-indexer using FSMonitor atop Brindexer [159], the indexer developed
by Cray for the Clusterstor [6] storage platform for exascale systems. The evaluation is done
on the Thor Lustre file system testbed described in Section 5.4.1. We use the file system load

78 Chapter 5. File System Monitoring for Large Scale Storage Systems

shown in Table 5.11, with the number of files ranging from 400 000 (4.4 GB) to 22 million
(243.2 GB).

Table 5.12 shows the time taken by the indexer and re-indexer to index the file system. We
run a script to modify a subset of files in random directories and then run the re-indexer to
index the file system. As seen from the table, re-indexer, built atop FSMonitor is able to
improve the re-indexing time by 93% for 22 million files, without having to crawl through
the entire file system to track changes.

#Files
Time taken by
indexer (sec)

Re-indexing time without
using FSMonitor (sec)

Re-indexing time
using FSMonitor (sec)

400k 155.2 18.0 8.5
1.2M 418.6 46.4 36.4
5.7M 1956.5 255.5 55.5
8.5M 3405.6 322.0 62.0
22M 9020.6 1075.2 75.5

Table 5.12: Time taken by indexer and re-indexer.

5.6 Chapter Summary

We have presented FSMonitor, a generic and scalable file system monitor for capturing and
reporting events on heterogeneous large-scale storage systems. FSMonitor uses a three-layer
approach to file system event monitoring. The lowest layer, DSI, interacts with a file system
to detect events and sends them to the middle layer, Resolution. Here events are resolved
to their absolute path names and aggregated to be sent to the upper layer, Interface. The
Interface layer stores aggregated events which can be accessed by clients via the FSMonitor

API.

FSMonitor implements a standard event definition process for any file system, and works
seamlessly for both parallel file systems and object stores. We evaluated FSMonitor on three
Lustre file system testbeds and a 8 TB Ceph store. We found that on a 897 TB Lustre
system, FSMonitor reported almost 38 000 events per second with low resource utilization.
On the 8 TB Ceph system, FSMonitor reported more than 2000 events per second. Com-
pared to iterative monitoring methods used by the popular Robinhood system, FSMonitor
achieves a 14.5% improved event reporting rate for multiple Lustre MDSs. FSMonitor also
performs well for metadata benchmarks. We also did not notice any performance degradation
in data benchmarks when using FSMonitor. Finally, we demonstrated order-of-magnitude
improvements in large-scale file system re-indexing times when using FSMonitor.

Chapter 6

Efficient Metadata Indexing for HPC
Storage Systems

6.1 Introduction

From life sciences and financial services to manufacturing and telecommunications, organi-
zations are finding that they need not just more storage, but high-performance storage to
meet the demands of their data-intensive workloads. This has resulted in a massive amount
of data generation (order of petabytes), creation of billions of files, and thousands of users
acting on HPC storage systems. According to a recent report from National Energy Research
Scientific Computing Center (NERSC) [14], over the past 10 years, the total volume of data
stored at NERSC has grown at an annual rate of 30 percent. This ever-increasing rate of
data generation combined with the scale of HPC storage systems make efficiently organizing,
finding, and managing files extremely difficult.

HPC users and system administrators need to query the properties of stored files to effi-
ciently manage the storage system. This data management issue can be addressed by an
efficient search of the file metadata in a storage system [111]. Metadata search is particularly
helpful because it not only helps users locate files but also provides database-like analytic
queries over important attributes. Metadata search involves indexing file metadata such as
inode fields (for example, size, owner, and timestamps) and extended attributes (for exam-
ple, document title, retention policy, and provenance), represented as <attribute, value>
pairs [109]. Therefore, metadata search can help answer questions like “Which application’s
files consume the most space in the file system?” or “Which files can be moved to second tier
storage?”.

Metadata indexing on large scale HPC storage systems presents a number of challenges.
First, scaling metadata indexing technology from local file systems to HPC storage systems
is very difficult. In local file systems, the metadata index has to index only a million files,

79

80 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

and thus can be kept in-memory. However, in HPC systems, the index is too large to reside
in-memory. Second, the metadata indexing tool should be able to gather the metadata quickly.
The typical speed for file system crawlers is in the range of 600 to 1,500 files/sec [42]. This
translates to 18 to 36 hours of crawling for a 100 million file data set. A large scale HPC
storage system can often contain a billion files, which implies crawl time in the order of
weeks [42]. Third, the resource requirements should be low. Existing HPC storage system
metadata indexing tools such as LazyBase [62] and Grand Unified File-Index (GUFI) [9]
require dedicated CPU, memory, and disk hardware, making them expensive and difficult
to integrate into the storage system. Fourth, metadata changes must be quickly re-indexed
to prevent a search from returning inaccurate results. It is difficult to keep the metadata
index consistent because collecting metadata changes is often slow [181] and therefore, search
applications are often inefficient to update.

Current state-of-the-art metadata indexing techniques on HPC storage systems include Spy-
glass [111], SmartStore [90], Security Aware Partitioning [146], and GIGA+ [149]. All of
these techniques use a spatial tree, such as k-d tree [210], or R-tree [82] to index metadata.
However, both these trees have poor performance in handling high dimensional data sets [40],
they handle missing values inefficiently, and do not perform well for data which have multiple
values for one field [184]. These drawbacks reduce their ability to index metadata efficiently.
Other metadata indexing techniques, like, GUFI [9], Robinhood Policy Engine [107], and
BorgFS [3], use a popular approach for metadata indexing where an external database is
maintained for indexing outside the HPC storage system. This approach involves a major
issue of maintaining consistency because the metadata is managed outside the file system
which is being indexed.

To address these issues in HPC storage system metadata indexing, we present an efficient
and scalable metadata indexing and search system, Brindexer. Brindexer enables a
fast and scalable indexing technique by using a leveled partitioning approach to the file
system. Leveled partitioning is different and more effective than the hierarchical partitioning
approach used in state-of-the-art indexing techniques discussed above. Brindexer uses an
in-tree indexing design and thus mitigates the issue of maintaining metadata consistency
outside the file system. Brindexer also uses RDBMS to store the index which makes
querying easier and more effective. To overcome the drawback of slow re-indexing process,
Brindexer uses a changelog-based approach to keep track of metadata changes in the file
system.

We present Brindexer and the scalable metadata changelog monitor that helps track the
metadata changes in HPC storage system. The HPC storage system that we choose for our
implementation is Lustre. According to the latest Top 500 list [16], Lustre powers ∼ 60%
of the top 100 supercomputers in the world. While the implementation and evaluation for
Brindexer is shown in the chapter as applied to Lustre storage system, its design makes
it applicable to other HPC storage systems, such as IBM’s Spectrum Scale, GlusterFS and
BeeGFS. We compare indexing and querying performance of Brindexer with the state-
of-the-art GUFI indexing tool and show that the indexing performance of Brindexer is

6.2. Background & Motivation 81

Figure 6.1: Comparison between hierarchical partitioning (left) and leveled partitioning
(right) approaches using the same file structure.

better by 69%, querying performance is better by 91%. Resource utilization by Brindexer
is lower than than of GUFI by 46% during indexing and 58% during querying 22 million files
on a 4.8 TB Lustre store.

6.2 Background & Motivation

In this section, we describe the different partitioning approaches for indexing a file system,
the metadata attributes motivated by some examples of file system search queries, the ar-
chitecture of HPC storage system with an emphasis on Lustre file system, and finally we
explain the different approaches to collecting metadata changes along with a motivation for
Brindexer to use changelog-based approach.

6.2.1 Partitioning Techniques

To exploit metadata locality and improve scalability, HPC storage system’s indexing tools
partition the file system namespace into a collection of separate, smaller indexes. There are
two main approaches to partitioning.

Hierarchical Partitioning

This is one of the most common approaches used in state-of-the-art metadata indexing
tools. Hierarchical partitioning is based on the storage system’s namespace and encapsulates
separate parts of the namespace into separate partitions, thus allowing more flexible, finer
grained control of the index. An example of hierarchical partitioning is shown in Figure 6.1.
As seen in the figure, the namespace is broken into partitions that represent disjoint sub-
trees. However, hierarchical partitioning faces an important challenge when the disjoint
sub-trees are skewed, that is, some trees have more files than others.

82 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

Leveled Partitioning

This approach creates index nodes at a particular level in the storage system tree. An
example of leveled partitioning is shown in Figure 6.1. In the figure, leveled partitioning is
done at level 2. Therefore, the file system namespace is divided into disjoint sub-trees from
level 2, with index nodes at the root of each sub-tree. This mitigates the issue of hierarchical
partitioning where some trees may be skewed which affects indexing performance. In the
leveled approach, all directories up to the next index level are indexed at the root of the
current level. Another major issue of hierarchical partitioning is that a file system crawler
should be used before indexing to partition the file system namespace into uniformly-sized
disjoint sub-trees. This requires extra resource consumption which can be overcome by
leveled partitioning where no such crawler is needed before indexing. Brindexer uses the
leveled partitioning approach to partition the file system namespace into smaller indexes.

6.2.2 Metadata Attributes

File metadata can be of two types.

• Inode Fields: They are generated by the storage system itself for every file, and are
shown in Table 6.1.

• Extended Attributes: These are typically generated by the users and applications.
These may include mime type attribute, which defines the file extensions, and permis-
sion attribute specifying the read, write and execute permissions set by the application.

All attributes are typically represented in <attribute, value> pairs that describe the prop-
erties of a file. For each POSIX file there will be at least 10 attributes, and for a large scale
HPC storage system with a billion files, there will be a minimum of 1010 attribute pairs.
The ability to search this massive dataset of metadata attributes pairs effectively gives rise
to metadata indexing.

Attribute Description Attribute Description
ino inode number size file size

mode file or directory blocks blocks allocated
nlink number of hard links atime access time
uid owner of file mtime modification time
gid group owner of file ctime status change time

Table 6.1: Metadata Attributes.

Some common metadata attributes used are shown in Table 6.1. The attribute mode is used
with the proper mask macros (S IFREG and S IFDIR) to determine if a file is a regular

6.2. Background & Motivation 83

Storage System Administrator Question Metadata Search Query
Which files should be migrated to secondary storage? size >100 GB, atime >1 year

Which files have expired their legal compliances? mode = file, mtime >10 years
How much storage do each user consume? Sum size where mode = file, group by uid

Table 6.2: Some sample file management questions and the metadata search queries used.

file or a directory. atime attribute is affected when a file is handled by execve, mknod, pipe,
utime, and read (of more than zero bytes) system calls. mtime is affected by the truncate
and write calls. ctime is changed by writing or by setting inode information.

Some sample file management questions and the queries used to search the metadata at-
tributes are shown in Table 6.2. These show the importance of fast and scalable metadata
indexing and querying that can help HPC storage system administrators.

6.2.3 HPC Storage System

HPC storage systems are designed to distribute file data across multiple servers so that
multiple clients can access file system data in parallel. Typically, they consist of clients that
read or write data to the file system, data servers where data is stored, metadata servers
that manage the metadata and placement of data on the data servers, and networks to
connect these components. Data may be distributed (divided into stripes) across multiple
data servers to enable parallel reads and writes. This level of parallelism is transparent to
the clients, for whom it seems as though they are accessing a local file system. Therefore,
important functions of a distributed file system include avoiding potential conflicts among
multiple clients and ensuring data integrity and system redundancy. The most common HPC
file systems include Lustre, GlusterFS, BeeGFS, and IBM Spectrum Scale. In this chapter,
we have built Brindexer on the Lustre file system.

Lustre File System

The architecture of the Lustre file system is discussed in Chapter 3 [153, 196]. Lustre has a
client-server network architecture and is designed for high performance and scalability. The
Management Server (MGS) is responsible for storing the configuration information for the
entire Lustre file system. This persistent information is stored on the Management Target
(MGT). The Metadata Server (MDS) manages all the namespace operations for the file
system. The namespace metadata, such as directories, file names, file layout, and access
permissions are stored in a Metadata Target (MDT). Every Lustre file system must have
a minimum of one MDT. Object Storage Servers (OSSes) provide the storage for the file
contents in a Lustre file system. Each file is stored on one or more Object Storage Target
(OST)s mounted on the OSS. Applications access the file system data via Lustre clients
which interact with OSSes directly for parallel file accesses. The internal high-speed data

84 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

networking protocol for the Lustre file system is abstracted and is managed by the Lustre
Network (LNet) layer.

6.2.4 Collecting Metadata Changes

After metadata indexing is done, regular re-indexing needs to be performed so that meta-
data search queries do not return out-of-date results. Re-indexing of the metadata can be
performed by running the indexing tool at regular intervals to index the entire file system
afresh. This is an approach that most state-of-the-art indexing techniques (GUFI [9], and
BorgFS [3]) use which maintain the index in an external database outside the file system.
However this is a very expensive approach for large filesystems. Another approach is to keep
track of metadata changes and re-index based on the changes. There are two ways to collect
metadata changes: Snapshot-based approach and Changelog-based approach.

• Snapshot-Based Approach: In this approach periodic snapshots are taken of the file
system metadata. Snapshots are created by making a copy-on-write (CoW) clone of
the inode file. Given two snapshots at time instant Tn and Tn+1, this approach will
calculate the difference between these two snapshots and identify the files that have
changed during the time interval between the two snapshots. The metadata index
crawler can only crawl over the changed files to re-index them. This is much faster
than periodic walks of the entire file system. However, this approach depends on a
filesystem design incorporating CoW metadata updates.

• Changelog-Based Approach: This approach logs the metadata changes as the changes
occur on the file system. This is done by recording the modifying events that occur
on the file system. Every HPC storage system maintains an event changelog (used for
auditing purposes), example mmaudit in IBM Spectrum Scale, and Lustre Changelog
in Lustre file system. Thus, building a scalable monitor that monitors the changelog
could be a very efficient solution for collecting metadata changes. Only the files on
which any modification event occurs need re-indexing. In Brindexer, we use the
changelog-based approach for collecting metadata changes.

Next, we explain the Lustre changelog which is used to keep track of file system events on
Lustre file system.

Lustre Changelog

Table 6.3 shows sample records in Lustre’s Changelog. We ran a simple script to see the
events recorded in the Changelog. The script first creates a file, hello.txt, then the file is
modified. The file is then renamed to hi.txt. A directory named okdir is then created.
Finally, we delete the file.

6.2. Background & Motivation 85

ID Type Time Date Flags Target FID Parent FID Target
11 01CREAT 21:18:47.30 2020.06.20 0x0 t=[0x5716:0x626c:0x0] p=[0x5716:0xe7:0x0] hello.txt
12 17MTIME 21:18:47.32 2020.06.20 0x7 t=[0x5716:0x626c:0x0] hello.txt
13 08RENME 21:18:47.41 2020.06.20 0x1 t=[0x5716:0x17a:0x0] p=[0x5716:0xe7:0x0] hello.txt

s=[0x5716:0x626b:0x0]
sp=[0x5716:0x626c:0x0] hi.txt

14 02MKDIR 21:18:47.42 2020.06.20 0x0 t=[0x5716:0x626d:0x0] p=[0x5716:0xe7:0x0] okdir
15 06UNLNK 21:18:47.43 2020.06.20 0x0 t=[0x5716:0x626b:0x0] p=[0x5716:0xe7:0x0] hi.txt

Table 6.3: A sample Lustre ChangeLog record showing Create File, Modify, Rename, Create
Directory, and Delete File events.

Each tuple in Table 6.3 represents a file system event. Every row in the Changelog has an
EventID – the record number of the Changelog; Type – the type of file system event that
occurred; Timestamp, Datestamp – the date time of the event occurrence; Flags – masking
for the event; Target FID – file identifier of the target file/directory on which the event
occurred; Parent FID – file identifier of the parent directory of the target file/directory; and
the Target Name – the file/directory name which triggered the event. It is evident that
the Parent and Target FIDs need to be resolved to their original names before they can be
processed by Brindexer. The following events are recorded in the Changelog:

• CREAT: Creation of a regular file.

• MKDIR: Creation of a directory.

• HLINK: Hard link.

• SLINK: Soft link.

• MKNOD: Creation of a device file.

• MTIME: Modification of a regular file.

• UNLNK: Deletion of a regular file.

• RMDIR: Deletion of a directory.

• RENME: Rename a file or directory.

• IOCTL: Input-output control on a file or directory.

• TRUNC: Truncate a regular file.

• SATTR: Attribute change.

• XATTR: Extended attribute change.

86 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

Note in Table 6.3 that Target FIDs are enclosed within t = [], and parent FIDs within
p = []. MTIME event does not have a parent FID. RENME event has additional FIDs,
s = [] denoting a new file identifier to which the file has been renamed, and sp = [] gives
the file identifier for the original file. These features are important when resolving FIDs.

Motivation for using Lustre Changelog

We analyze a 24-hour Lustre Changelog obtained from a production system’s petascale
Lustre file system in Los Alamos National Laboratory (LANL).

Some observations from the analysis are:

• There are more than 34 million file system events which occur per day in a large-scale
production-level HPC storage system.

• The number of unique files that get affected in 24 hours is ∼ 10.5 million.

• The number of unique directories on which metadata events occur is ∼ 110,000.

• The number of events for each individual event is shown in Table 6.4.

Event Type # Events Event Type # Events
CREAT 1,322,010 MKDIR 67,791
HLINK 8,841 SLINK 94,711
MTIME 10,098,485 UNLNK 750,480
RMDIR 59,841 RENME 97,227
SATTR 3,432,589 XATTR 164

Table 6.4: Number of file system events for each metadata event in a 24-hour Lustre
Changelog.

The analysis shows that performing a snapshot-based approach for keeping track of metadata
changes in the file system may be very expensive for large, active filesystems. Also, to
determine the directories for the affected 10.5 million files is time-consuming. The Lustre
changelog, however, already reports the parent directories, which are also the directories
which need to be re-indexed. This will improve the performance of Brindexer immensely
because it does not need to keep track of all the 10.5 million files for re-indexing, but only
the 110,000 unique directories. The challenge is to design an efficient and scalable changelog
processing engine to get the parent FIDs (directories) of more than 10 million MTIME and
more than 3 million SATTR files which are not already recorded in the changelogs. This is
discussed in Section 6.3.2.

6.3. System Design 87

Figure 6.2: Overall architecture of Brindexer.

6.3 System Design

This section describes the design and implementation details of Brindexer. The overall
architecture of Brindexer is shown in Figure 6.2. Brindexer runs on the file system
clients. It consists of the indexer, crawler and the metadata query interface. The indexer
and crawler are responsible for crawling the entire file system, collecting the inode details
from the metadata servers and indexing the file system metadata. As Brindexer runs on
the same file system which it indexes, the integrated metadata index database is created on
the storage servers of the file system. The re-indexer is part of the indexer in Brindexer
and interacts with the file system changelog to keep track of the metadata changes. Users
and applications interact with the the metadata query interface provided by Brindexer to
query the metadata index database. Next, we describe each component of Brindexer in
more details.

6.3.1 Indexer

The overview of the indexing process of Brindexer is shown in Algorithm 6. Brindexer
uses a leveled partitioning technique to partition the file system namespace. This is described
earlier in Section 6.2. Brindexer performs the leveled partitioning approach in parallel,
where the indexing task can be distributed on multiple client indexers for fast and scalable
indexing. Each client node can be assigned a set of sub-trees and independently manages
the file system indices under those sub-trees. This is shown in Figure 6.3 and this paralleled
approach improves the performance of Brindexer. Crawler is responsible for doing the
directory walk of the file system namespace.

88 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

Figure 6.3: Parallelism in leveled partitioning (left) and 2-level database sharding (right) of
Brindexer.

Algorithm 6: Indexing function in Brindexer.

Function Indexing
Input: Indexing Level: indexLevel
Output: Metadata Index Database: indexdb
for Directory dir in directoryWalk do

if dir in Level indexLevel then
Setup database in Index Directory
processIndexDir(dir)

processRootDir(level)
return (indexdb)

Function processIndexDir
Input: Index Directory: dir
for Directory subdir in recursive read of ll readdir(dir) do

hash = Calculate hash of subdir
for File file in stat(subdir) do

new lstat(file)
Place inode information of file in the database shard with the hash value as hash

Function processRootDir
Input: Indexing Level: indexLevel
Setup database in Root Directory
for Directory dir in directoryWalk do

if dir < Level indexLevel then
for Directory subdir in recursive read of ll readdir(dir) do

hash = Calculate hash of subdir
for File file in stat(subdir) do

new lstat(file)
Place inode information of file in the database shard with the hash value as hash

The input to Indexer is the indexing level where all the directories at that level need to be
indexed. The root directory is responsible to index all directories above the indexing level.
For each indexed directory, a recursive readdir() is performed to find all sub-directories. For
every sub-directory, a stat() call is made to get the files in that directory, and to get the

6.3. System Design 89

inode information for every file, new lstat call is performed on the file.

Each individual index directory is set to a 2-level database sharding approach to keep the
database shards to a reasonable size. This is done to maximize the database performance
by querying an optimum number of files per database. This is shown in Figure 6.3. The
number of databases per index node is limited to 64 (0x40). This number is based on
experiments to measure the time to index and query Brindexer for 1 billion files. 64
gives the optimum performance by having the optimal resource utilization. Within each
database in the index node, there are database shards. Each database shard holds metadata
information of one or more sub-directories of the index directory. To find the placement of
the metadata information for a file, first MD5 hashing is done on the parent directory of
the file to get the database shard. Next, MD5 hash is done on the index directory to find
the database within which the database shard is placed. This 2-level sharding is done by
Brindexer to maximize the query performance.

6.3.2 Re-Indexer

The architecture of re-indexer is shown in Figure 6.4.

Figure 6.4: Design of Re-Indexer in Brindexer.

Brindexer’s re-indexer is a multi-threaded set of processes running on filesystem clients.
One thread is responsible for processing the file system changelogs gathered from the meta-
data servers, which are processed in parallel on the clients. A fast and efficient caching
mechanism is used to store the mappings of FIDs to paths to improve performance of pro-
cessing of the changelogs. Another thread maintains a suspect file which has a collection of
all suspect directories (directories which have been modified and need to be re-indexed) for
a particular time period. This suspect file is given as an input to the indexer which then
does a stat() for only the suspect directories.

90 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

Processing Changelogs

The re-indexer collects events from changelog in batches. Every event that is collected
needs to be processed to collect the directory name in order to be placed in the suspect
file. In particular, FIDs are not necessarily interpretable by Brindexer, and thus must be
processed and resolved to absolute path names. In Lustre file system, to process the FIDs,
Lustre fid2path tool is provided which resolves FIDs to absolute path names. However, the
fid2path tool is slow and can delay the reporting of events. For example, in Section 6.4.6 we
show that this delay can cause a decrease of 31.7% in the event reporting rate compared to
the events generated in the file system. To minimize this overhead, re-indexer implements a
Least Recently Used (LRU) Cache to store mappings of FIDs to source paths.

Algorithm 7: Processing Changelog events in Lustre file system.
Input: Lustre path lpath, Cache cache, MDT ID mdt
Output: SuspectF ile
while true do

events = read events from mdt Changelog
for event e in events do

resolvedPath = processEvent(e)
SuspectF ile.add(resolvedPath)

Clear Changelog in mdt
return (SuspectF ile)

Function processEvent
Input: Event e
Output: resolvedPath
Extract event type, time, date from e
try:

path = cache.get(parentFID)
if parentFID not found in cache then

path = fid2path(parentFID)
cache.set(parentFID, path)

catch fid2pathError:
path = cache.get(targetFID)
if targetFID not found in cache then

path = fid2path(targetFID)
Remove file name from path
cache.set(targetFID, path)

return (path)

Algorithm 7 shows the processing steps for re-indexer. Changelog events are processed
in batches. A LRU cache is used to resolve parent FIDs (directories) to absolute paths.
Whenever an entry is not found in the cache, we invoke the fid2path tool to resolve the FID
and then store the mapping (FID – path) into the LRU cache. MTIME and SATTR events
do not have a parent FID and thus they are processed in the catch block, where the target
FIDs are processed. The file name from the absolute path is removed to get the directory
name and then the path is added to the cache, so that fid2path tool is not called on the file

6.4. Evaluation 91

again. It should be noted that the cache only needs to track modified parent directories,
so only 110,000 entries are present in a 24-hour suspect file rather than 10.5 million files.
All of the resolved directory paths are added to the suspect file (not adding duplicates).
After processing a batch of file system events from the Changelog, re-indexer will purge
the Changelogs. A pointer is maintained to the most recently processed event tuple and all
previous events are cleared from the Changelog. This helps reduce the overburdening of the
Changelog with stale events.

Indexer periodically reads the suspect file and re-indexes the file system based on the suspect
directories. Once indexer acts on a suspect file, a timestamp is given to the re-indexer and
a new suspect file is written to add suspect directories from that time stamp.

6.3.3 Metadata Query Interface

Metadata query interface in Brindexer interacts with the metadata index database which
is stored on the storage servers in the file system. The metadata index database uses RDBMS
to store the index information of large-scale HPC storage systems. There are few reasons
for selecting RDBMS for our implementation. First, we are not concerned with scalability
of the database because our design of indexer and re-indexer takes care of it. We use
parallel leveled partition approach for speed and 2-level database sharding in the index level
directory for scalability and optimal query performance. RDBMS therefore serves its purpose
of providing a nice API for the users to query the database. Second, RDBMS is very efficient
in handling bulk writes and appends which is needed during the re-indexing process. Also,
doing bulk reads on RDBMS is efficient. Third, the limitation of RDBMS is when it has
to handle continuous stream of inputs. In Brindexer, the metadata index database only
has periodic input stream and RDBMS works efficiently in this case. Fourth, RDBMS also
lowers performance when it has to handle contended writes as it has to deal with multiple
locking issues. The 2-level sharding and the namespace partition to handle disjoint sub-trees
in Brindexer does not involve metadata index database to handle contended writes.

6.4 Evaluation

We evaluate the performance of Brindexer by analyzing each component in detail. In
this section, we describe the the experimental setup for the evaluation, workloads that were
used for analyzing the performance, and evaluate indexer, re-indexer, and metadata query
interface.

92 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

6.4.1 Experimental Setup

To evaluate Brindexer, we use a Lustre file system cluster of 9 nodes with 4 MDSs, 3
OSSs and 2 clients. All nodes run CentOS 7 atop a machine with an AMD 64-core 2.7 GHz
processor, 128 GB of RAM, and a 2.5 TB SSD. All nodes are interconnected with 10 Gbps
bandwidth ethernet. Each MDS has a 128GB MDT associated with it. Furthermore, each
OSS has 3 OSTs, with each OSS supporting 1.6 TB attached storage on OSTs. Therefore,
our analysis is done on a 4.8 TB Lustre store.

6.4.2 Workloads

We use 2 kinds of workloads to test the performance of Brindexer as shown in Tables 6.5
and 6.6.

#Files #Directories Avg #Files per Dir Total Size (MB)
400,000 (400k) 1,000 400 1.08

1,200,000 (1.2M) 1,000 1200 43.05
5,700,000 (5.7M) 5,700 1000 90.07
8,500,000 (8.5M) 8,500 1000 140.78
22,000,000 (22M) 222,000 1000 373.9

Table 6.5: Workload 1: Flat directory structure: Smaller number of directories with higher
average number of files per directory.

#Files #Directories Avg #Files per Dir Total Size (GB)
400,254 (400k) 43,189 9.26 4.4

1,200,762 (1.2M) 129,565 9.27 13.3
5,736,974 (5.7M) 619,029 9.27 63.4
8,530,405 (8.5M) 815,753 10.46 95.1
22,013,970 (22M) 2,375,341 9.27 243.2

Table 6.6: Workload 2: Hierarchical directory structure: Large number of directories with
lower average number of files per directory.

Both workloads have 5 different numbers of files (400k, 1.2M, 5.7M, 8.5M, and 22M). How-
ever, the workloads differ in the number of directories. Workload 1 has a flat directory
structure with just one level consisting of lower number of directories with higher number of
files per directory. Workload 2 has a hierarchical structure (with maximum directory depth
of 17) consisting of higher number of directories with lower number of file per directory.
Therefore, workload 1 represents ideal case while workload 2 takes care of the real-world use
case.

We compare Brindexer with state-of-the-art indexing tool GUFI [9] for indexing. For
workloads 1 and 2, Brindexer sets an indexing level of 1 and 3 respectively. This is

6.4. Evaluation 93

Figure 6.5: Comparison of system call stack for indexing 1.2M files in hierarchical directory
structure by Brindexer (left) and GUFI (right).

because, workload 1 has only one level, and for workload 2, it turns out that number of
directories at level 3 equals the average number of directories per level.

To evaluate querying performance of Brindexer, besides GUFI, we also compare Brindexer
with Lustre’s default lfs find tool [11] and Robinhood policy engine [107].

For evaluation of re-indexer, we evaluate the performance of Lustre changelog processing
and compare it with Robinhood [107], as these are the only tools which use changelog-based
approach to keep track of metadata changes.

All experiments are run five times and the evaluation shows the average of these runs. All
caches are cleared between runs.

Next we give a brief description of GUFI and Robinhood.

GUFI stands for Grand Unified File Index. It uses breadth first traversal to traverse the
entire file system tree in a parallel manner. GUFI uses one index database per directory to
have the same security permission as that of the directory. This entire database tree is done
outside the file system. Although GUFI is meant for indexing into an external database, we
modify GUFI to run in-tree and perform metadata indexing inside Lustre file system itself.
This provides a much fairer comparison with Brindexer. Brindexer is not concerned
with directory permissions because it is meant for system administrators.

Robinhood collects information from the filesystem it monitors and inserts this information
into an external database. It makes use of the Lustre changelog to monitor and keep track
of file system events. For multiple MDSs, Robinhood uses a round-robin approach to keep
track of changelogs.

6.4.3 Comparison of System Calls

Both Brindexer and Gufi were used to index 1.2 million files in hierarchical directory
structure and the system calls were traced in a CPU flame graph [7]. This is shown in
Figure 6.5. In a flame graph, each box represents a function in the stack. On the y-axis,
the depth of the stack is shown and x-axis spans the sample population. The width of each
box shows the amount of time a system call spends on CPU. The major observation from

94 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

the flame graphs is that sys newlstat() which is used for getting a file’s inode information is
represented as one block in Brindexer and multiple individual stack calls in GUFI. Also,
cumulative width of the boxes for sys newlstat() in GUFI exceeds the width in Brindexer,
which means that GUFI spends more time in CPU for retrieving file information. This shows
that Brindexer is more effective in using the system call to retrieve file information than
GUFI.

6.4.4 Evaluation of Indexer

Time Taken to Index

The time taken to index both workloads by Brindexer and GUFI is shown in Figure 6.6.
As seen in the figure, GUFI performs better than Brindexer for workload 1 where there
is a flat directory structure. This is because the design of GUFI enables optimization for
a directory level of just 1 where each directory has a large number of files. However, for
the real world case in workload 2, Brindexer outperforms GUFI. As the number of files
increase, the time to index in GUFI increases exponentially, with the maximum difference
between Brindexer and GUFI of 69% in the time taken to index seen for 22M files.

Figure 6.6: Time taken to index by Brindexer and GUFI.

Resource Utilization

Figures 6.7 and 6.8 show the resource utilization of Brindexer and GUFI when indexing
the file system for both workloads. The legend used in Figure 6.7 is consistent for all the
graphs. We only show the resource utilization of Lustre client and MDS. The behavior shown
is similar on the OSSs. The CPU utilization of Brindexer during indexing is lesser than
GUFI by 46.6% on clients and 86.04% on the MDSs. It can be further seen that GUFI is much
more CPU intensive than Brindexer on MDS. This is because of the multiple individual

6.4. Evaluation 95

Figure 6.7: CPU utilization by Brindexer and GUFI during indexing on Client (left) and
MDS (right).

Figure 6.8: Memory utilization by Brindexer and GUFI during indexing on Client (left)
and MDS (right).

stat calls that GUFI makes to the MDS as seen in Figure 6.5. Even for workload 1, where
GUFI takes less time to index than Brindexer, the CPU utilization is much more than
Brindexer. Similar behavior as CPU is shown on other resources like network and disk.
However, in case of memory, both Brindexer and GUFI have a similar memory utilization
on clients and MDS as seen in Figure 6.8.

6.4.5 Evaluation of Metadata Query Interface

To evaluate the metadata query interface of Brindexer, we run a query to find all files
whose size is greater than 10 MB. We compare the query performance of Brindexer with
GUFI, Lustre’s lfs find tool, and Robinhood policy engine.

96 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

Time Taken to Query

Figure 6.9: Time taken to query by Brindexer, GUFI, lfs find, and Robinhood.

Figure 6.9 shows the time taken to run the query and get the results back from the index
database from Brindexer, GUFI, lfs find, and Robinhood. GUFI performs worse than
Brindexer for both the workloads. This is because Brindexer makes use of parallel
search on all the index nodes. The 2-level database sharding in Brindexer helps optimize
queries further. We compare Brindexer with lfs find and Robinhood using queries on only
workload 2. lfs find traverses the entire file system to get the results without using indexing
and performs the worst. The difference in query performance between Brindexer and
Lustre’s default lfs find tool is proportional to the number of index nodes at the indexing
level. The query performance of Brindexer and Robinhood is similar, though Robinhood
uses an external database to index the file system. Therefore, Brindexer reaches an ideal
query performance in the file system itself and improves upon state-of-the-art GUFI by 91%.

Resource Utilization

Figures 6.10 and 6.11 show the resource utilization of Brindexer and GUFI when querying
the file system for both workloads. The legend used in Figure 6.10 is consistent for all the
graphs. The resource utilization during querying is shown on OSSs instead of MDS because
metadata index database resides in the OSSs of the file system. It is seen that GUFI’s
query task is much more CPU intensive than that of Brindexer. The memory utilization
is similar for both. Therefore, Brindexer helps reduce CPU utilization during queries by
91.8% on clients and 57.8% on OSSs compared to GUFI.

6.4. Evaluation 97

Figure 6.10: CPU utilization by Brindexer and GUFI during querying on Client (left) and
MDS (right).

Figure 6.11: Memory utilization by Brindexer and GUFI during indexing on Client (left)
and MDS (right).

6.4.6 Evaluation of Re-Indexer

The analysis of 24-hour Lustre changelog that was described in Section 6.2.4 shows that on
a large scale production level Lustre store, more than 34 million events occur per day which
corresponds to ∼400 events per second. We write a script that operates on the 22 million
file dataset in workload 2 and generates 766 random events (create, modify and remove) per
second per MDS. We then evaluate the performance of re-indexer in reporting these events.

Event Reporting Analysis

The event reporting rates (rate at which the suspect file is created) of Brindexer and
Robinhood are shown in Table 6.7. Lustre’s fid2path tool is resource intensive and slow.
Therefore, there is a 28.7% improvement in event reporting rate when LRU cache is used

98 Chapter 6. Efficient Metadata Indexing for HPC Storage Systems

in Brindexer’s re-indexer to save parent FID and path mappings. Brindexer performs
better than Robinhood when it come to event reporting comparison because of Robinhood’s
round-robin approach to processing changelogs from the MDSs. Brindexer uses a parallel
and scalable approach which improves the event reporting rate.

#Events per second
Events generated 766

Events reported by Brindexer without cache 523
Events reported by Brindexer with cache 734

Events reported by Robinhood 710

Table 6.7: Event Reporting Rates by Brindexer and Robinhood.

Resource Utilization

Table 6.8 shows the effect of varying LRU cache size in re-indexer. The best event reporting
rate with an optimal resource utilization is achieved when cache size is set to 5000. There-
fore, re-indexer does not utilize a lot of cpu (2.94%) and memory (62.4 MB) and can run
continuously to keep track of the metadata events in real-time.

Cache Size
(#fid2path)

CPU%
on client

Memory (MB)
on client

Events/sec reported
by Brindexer

200 4.8 88.7 578
500 3.5 84.3 624
1000 2.98 75.6 659
2000 2.95 61.3 698
5000 2.94 62.4 734
7500 2.92 60.7 720

Table 6.8: Brindexer performance and resource utilization vs. cache size.

6.5 Chapter Summary

In this chapter, we have presented Brindexer, a metadata indexing tool for large-scale
HPC storage systems. Brindexer has an in-tree design where it uses a parallel leveled
partitioning approach to partition the file system namespace into disjoint sub-trees which
can be indexed in parallel. Brindexer maintains an internal metadata index database which
uses a 2-level database sharding technique to increase indexing and querying performance.
Brindexer also uses a changelog-based approach to keep track of the metadata changes and
re-index the file system. Brindexer is evaluated on a 4.8 TB Lustre storage system and
is compared with state-of-the-art GUFI and Robinhood engines. Brindexer improves the
indexing performance by 69% and the querying performance by 91% with optimal resource
utilization.

6.5. Chapter Summary 99

In future, we plan to implement the re-indexer within the indexer of Brindexer so that
there is no overhead from reading and writing entries to suspect files. We also plan to
implement Brindexer for other HPC storage systems like BeeGFS and IBM Spectrum
Scale.

Chapter 7

I/O Load Balancing for Big Data
HPC Applications

7.1 Introduction

High performance computing (HPC) is routinely employed in many science domains such as
Physics, and Geology, to simulate and understand the behavior of complex phenomena. Big
data driven scientific simulations are resource intensive and require both computing and I/O
capabilities at scale. There is a crucial need for revisiting the HPC I/O subsystem to better
optimize for and manage the increased pressure on the underlying storage systems from big
data processing.

Several factors affect the I/O performance of big data HPC applications. First, the number
and kinds of applications that an HPC storage system supports is increasing rapidly [213],
which leads to increased resource contention and creation of hot spots where some data
or resources are consumed significantly more than others. Second, the underlying storage
systems, e.g., Ceph [201], GlusterFS [46], and Lustre [47], are often distributed, and adopt a
hierarchical design comprising thousands of distributed components connected over complex
network topologies. Managing and extracting peak performance from such resources is non-
trivial. With changing application characteristics, static approaches (e.g., [68, 198]) are
no longer sufficient, necessitating dynamic solutions. Third, the storage components can
develop load imbalance across the I/O servers, which in turn impacts the performance and
time to solution for the big data problem. Consequently, achieving load balancing in the
storage system is a key for achieving a sustainable solution.

Load balancing for HPC storage systems is crucial and is being actively studied in recent
works [71]. Extant systems typically attempt to perform load balancing by either having
limited support for read shedding to redirect read requests to replicas of the primary copy,
e.g., in Ceph [135], or performing data migration. Alternatively, per-application load bal-

100

7.1. Introduction 101

ancing has also been considered to balance the load of an application across the various
I/O servers [198]. These existing approaches lack a global view of all the components in the
hierarchical structure of the system, and mainly focus on only a small subset of metrics (e.g.,
only the storage capacity, and not performance of the components). Thus, these approaches
cannot guarantee that the aggregate I/O load of multiple big data applications concurrently
executing atop a parallel file system (with bursty behavior) is evenly distributed.

Consider the Lustre file system that forms the backend storage in, among other HPC sys-
tems, Oak Ridge National Laboratory’s (ORNL) Titan supercomputer [43, 72]. The default
strategy in Lustre is to allocate storage targets to I/O requests using a round-robin approach.
Experiments show that this approach is inclined to either under- or over-utilize the resources
due to the bursty nature of applications.

In this chapter, we address the load imbalance problem in Lustre by enabling a global view
of the statistics of key components. We select Lustre to showcase our approach as Lustre is
deployed on 60 of the top 100 fastest supercomputers [72], and improving its performance
will benefit a wide range of applications and users. We go beyond just network load balanc-
ing, e.g., as in NRS [166], or per-application approaches, e.g., as in access frequency-based
solutions [198], to ensure that the Lustre Object Storage Targets (OSTs) that actually store
and serve the data along with other I/O system components are load balanced. We lever-
age the existing hierarchy of Lustre to avoid introducing additional performance bottlenecks,
and co-locate the global component of our load balancer on Lustre’s Metadata Server (MDS)
that has a global view of all other components.

Our goal is to improve the end-to-end performance of HPC storage systems for big data
applications. Our data-driven approach learns system behavior to better manage the load
across various Lustre components. Specifically, we make the following contributions.

• We design a model for the Lustre file system to incorporate a load balancing strategy
that considers the global view of the system parameters.

• We utilize a scalable publisher-subscriber model to monitor and capture the load of
key components in Lustre. We use a Markov chain model that learns and predicts
the future behavior of the application using the monitored data, and a minimum-cost
maximum-flow algorithm to assign storage targets in a global load aware fashion.

• We design a realistic trace-driven Lustre simulator that captures the load imbalance
behavior. We use the simulator and a real setup to study our approach and design
decisions therein.

• We also evaluate the effectiveness and scalability of our approach. Experiments show
that our approach helps in achieving a better load-balanced storage servers, which in
turn can yield improved end-to-end system performance.

102 Chapter 7. I/O Load Balancing for Big Data HPC Applications

7.2 Background and Motivation

In this section, we first present an overview of the existing load balancing used for Lustre.
Then we present a quantitative study of the load imbalance in the HPC I/O subsystem to
motivate our approach.

The default Lustre implementation uses a round-robin approach coupled with disk utilization
measure to balance the load across Object Storage Targets (OSTs). The first available OST
is selected to store a file and if the OST still has available space (more than a predefined
threshold), is then placed at the end of a list for the next round . This technique does not
consider the load on other resources (MDS or Object Storage Servers (OSS)) or the I/O load
on OSTs, and can lead to performance degrading hot spots.

Network Request Scheduler (NRS) [166] aims to achieve distributed network load balancing
at the Lustre server level by reordering incoming RPCs to a Lustre server (e.g., MDS or
OSS) so that individual Metadata Storage Targets (MDTs) or OSTs running on the server
receive a fair share of the server’s network resources. Our approach differs from NRS in that
we go beyond considering only the network resources to include the many factors affecting
I/O performance on various Lustre components (Table 7.1), and aim to provide a globally
balanced I/O subsystem to offer more stable I/O performance.

7.2.1 Progressive File Layout

Striping in Lustre file system enables users to obtain high I/O performance throughput [98].
Data is divided into stripes according to a striping pattern and the striped data is stored
across OSTs in a round-robin fashion. Progressive file layout (PFL) [134] is a recent feature
in Lustre where a file can have a series of flexible striping layouts. Using PFL, a file can
be created with several non-overlapping extents, with each extent having different striping
parameters.

Figure 7.1: An example PFL layout.

An example of a 4-component PFL layout is shown in Figure 7.1. The first component with
extents ranging from zero to 128 MB has only one stripe. As the file size increases beyond
128 MB till 512 MB, the file will be divided into three stripes, from 512 MB to 2 GB, the
number of stripes is eight, and beyond 2 GB till the end of file, the file will have 16 stripes.
The PFL feature is implemented using composite file layouts for regular files. The number of
sub-layouts in each file and the number of stripes in each sub-layout can be specified by users

7.2. Background and Motivation 103

Component Factors Discussion
Metadata Server (MDS) CPU% CPU and memory utilization

Memory% reflect the system load.
/proc/sys/lnet/stats Load on the Lustre networking

layer connected to MDS.
Metadata Target (MDT) mdt.*.md stats Overall metadata stats per MDT.

mdt.*.job stats Metadata stats per MDT per job.
Object Storage Server (OSS) CPU% Reflects the system load

Memory% of the management server.
/proc/sys/lnet/stats Load on the Lustre networking

layer connected to OSS.
Object Storage Target (OST) obdfilter.*.stats Overall statistics per OST.

obdfilter.*.job stats Statistics per job per OST.
obdfilter.*OST*.kbytesfree Available disk space per OST.
obdfilter.*OST*.brw stats I/O read/write time and sizes per OST.

Table 7.1: List of I/O performance statistics for relevant system components.

using the lfs setstripe command. An example command for the PFL layout in Figure 7.1
is given below, where parameters E and c specify the extent and stripe count respectively.

lfs setstripe -E 128M -c 1 -E 512M -c 3 -E 2G -c 8 -E -1 -c 16 <filename>

7.2.2 I/O Performance Statistics

Lustre is a hierarchical system. We identify the factors that affect the I/O performance in
every layer of the system as shown in Table 7.1. We utilize the files /proc/meminfo and
/proc/loadavg to capture the memory and CPU utilization, and also read the values of
Lustre parameters in various components of the hierarchical system, e.g., via
obdfilter.*OST*.brw stats.

The performance for serving metadata and the I/O rate of serving the actual data to the
clients is dependent on the network performance. A congested network affects the I/O
performance adversely. The network bandwidth information can be extracted using the
lnet stat interface (/proc/sys/lnet/stats), which runs over LNET and Lustre network
drivers.

7.2.3 The Need for Load Balancing

We conducted a simulator-based study to demonstrate the need for balanced load placement
across Lustre components. Our simulator (Section 7.4.1) faithfully implements the func-
tionalities of various components in Lustre. In our model, we have 8 OSSes and every OSS
is linked to 4 OSTs (a total of 32 OSTs). We use 24-hour traces from the combination of
three application traces to drive the simulator. Two of the application traces are from the
Interleaved-Or-Random (IOR) benchmark [121] and the Hardware Accelerated Cosmology
Code (HACC) Application I/O kernel [120], while the third application trace is generated

104 Chapter 7. I/O Load Balancing for Big Data HPC Applications

from a HPC Transaction Processing Application (TPA) running at a large financial institu-
tion [190]. For this test, we use the default round-robin approach of Lustre for allocating
OSTs for file creation requests. All results shown are the average taken from three runs.

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 24

M
a

x
/M

e
a

n
 L

o
a

d

Hours

Max OST Load/Mean OST Load

Figure 7.2: Max/Mean
OST load over time
(Round-Robin).

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24
M

a
x

/M
e

a
n

 O
S

S
 L

o
a

d
Hours

Max OSS Load/Mean OSS Load

Figure 7.3: Max/Mean
OSS load over time
(Round-Robin).

1 3 5 7 9 11 14 17 20 23

0
.9

9
9
4

1
.0

0
0
0

Time (Hours)

N
o
rm

a
liz

e
d
 C

a
p
a
ci

ty

Figure 7.4: Capacity of all
OSTs over time (Round-
Robin).

We measured load balance by taking the ratio of maximum system load to the mean system
load—system load for OSTs is the disk space used, and for OSSes is the CPU utilization. This
ratio should be one for ideal load balance. For OSTs, we measure the ratio of maximum
disk space consumed taking all OSTs into account to the mean disk space consumed for
every hour for 24 hours as shown in Figure 7.2. We see that the system starts from a highly
unbalanced setup of OSTs and takes over 12 hours to get close to 1. Thus round-robin is
very slow in providing load balance.

In addition to load balancing OSTs, our objective is to also have a load balanced set of OSSes.
We study the ratio of maximum CPU utilization taking all OSSes into account to the mean
CPU utilization for a period of 24 hours with 1-second interval as shown in Figure 7.3.
This ratio should also be ideally 1. As seen in the graph, there are huge fluctuations in the
ratio for a very long window of 20 hours, again highlighting the weakness of the round-robin
approach.

Since, load on OSTs is a continuous function (not represented in Figure 7.2), we also plot
load of OSTs along time in a box-plot. Capacity in an OST is the amount of free disk space
available. As the capacity continuously changes every hour, we normalize it to the median
OST capacity for that hour. This is shown for the studied 24-hour period in Figure 7.4.
The box plot highlights the variation in the capacities of all OSTs combined for different
hours. Round-robin policy is unable to balance the system due to lack of consideration for
numerous other factors as discussed earlier. As the trace file from IOR benchmark generates
a continuous stream of file write requests instead of a more complex bursty pattern, the
system still becoming unbalanced shows the weakness of the default approach to capture the
application behavior and create a well-balanced and application-attuned load distribution.

This study highlights the need for better load balancing for the HPC I/O subsystem. More-
over, an opaque round-robin approach is incapable of accounting for workload dynamic-
ity [198] such as that created by regular purge of old data in HPC systems (by OLCF

7.3. System Design 105

Figure 7.5: Overview of the proposed architecture.

practice [44]). In this chapter, we address such problems by designing an OST management
layer that provides a global and detailed system state view to the allocator.

7.3 System Design

We have implemented our load balancing design for the widely-used Lustre file system.
However, our design can be extended for use in other HPC parallel file and distributed
storage systems that employ a similar hierarchical structure.

Figure 7.5 shows an overview of the architecture. It presents an “end-to-end” control plane
for managing I/O with components both on the client side and the server side. When run-
ning applications for the first time, the client side makes use of a customized tracing tool,
miniRecorder. This tool collects information about the I/O accesses, such as the num-
ber of bytes written, file name, number of stripes, and MPI rank and communicator for
each file. MiniRecorder needs to collect traces only for the first run of an application.An
application’s I/O behavior is identified, which does not change across multiple runs of an
application. The collected traces are fed into the parser that then uses the information
to drive the prediction model. Our predictions are based on ARIMA time series model-
ing [48]. The output of the time series prediction provides estimates of future application
requests, which are sent to the configuration manager. The configuration manager is
responsible for determining if the layout for an application is PFL. PFL Config stores all
the PFL configurations added by a user which is used by the configuration manager. The
output is then stored in an interaction database for later use. We refer to the database
as “interaction database” because it offers a point of interaction between our server-side and
client-side libraries.

On the server side, OSSs collect the CPU and memory usage information, associated OSTs
capacity (kbytestotal) and the number of bytes available on the OSTs (kbytesavail). These
statistics are sent to the MDS using the statistics collector module on the OSSs. The
collected information on the MDS is parsed in the statistics collector placed on the
MDS to generate a file containing updated statistics for the MDS, OSS and associated
OSTs. This file is fed to the OST allocation algorithm. The input to the OST allocation

106 Chapter 7. I/O Load Balancing for Big Data HPC Applications

algorithm is the predicted set of requests received from the clients from the interaction

database via ZeroMQ message queues [86], and the output is the list of OSTs to be al-
located for every request, which will yield a load-balanced distribution over the involved
OSSs and OSTs. The allocated OSTs are stored in the interaction database along with
the predicted requests. Next, the placement library intercepts the I/O requests from
the applications, consults the interaction database, and routes the application requests to
appropriate resources by creating a given file’s metadata on the MDS.

7.3.1 Parallel File Access Modes for Varying Striping Layouts

Before explaining the different components, we show how different file access modes - File-
per-process (FPP) and Single-shared-file (SSF) are represented in PFL and non-PFL layouts.
We show an overview of the representation in Figures 7.6, 7.7, 7.8, and 7.9. The PFL layout
used in the example is Configuration 1 discussed in Section 7.2.1.

Figure 7.6: Layout in FPP mode - 4 processes each writing 8GB in a non-PFL setup.

Figure 7.7: Layout in FPP mode - 4 processes each writing 8GB in a PFL setup.

Figure 7.8: Layout in SSF mode - 1 process creating a 32GB file in a non-PFL setup.

Figure 7.9: Layout in SSF mode - 1 process creating a 32GB file in a PFL setup.

For FPP mode, we have four processes each writing 8 GB to the parallel file system. In
the non-PFL layout, each 8 GB file will be striped into a pre-defined number of stripes (8
in the figure), where as, in the PFL layout each 8 GB file will be striped according to the
PFL layout set by the user for those files or directories (Configuration 1). In SSF mode, a

7.3. System Design 107

single process creates a single file where all other processes perform I/O operations. This
file will be striped into a pre-determined number of stripes according to a non-PFL or a
PFL layout. It is evident that different stripes will be of different sizes based on the file
access modes as well the striping layouts. The challenge lies in selecting OSTs to place these
varying size stripes such that all OSTs are load balanced and have less resource contention,
which improves the I/O throughput.

7.3.2 Client-Side Components

In the following, we describe the components that run on the clients.

Tracing Tool

We implement a simple and lightweight I/O tracing library, miniRecorder, based on Recorder
[127]. Recorder is a multi-level I/O tracing framework, which can capture I/O function calls
at multiple levels of the I/O stack, including HDF5, MPI-IO, and POSIX I/O. For our end-
to-end system, we limit the range of intercepted function calls to file creation and write calls,
and record the bytes written, file name, stripe count, and MPI rank and communicator for
each file. We focus on writes more than reads because caching mechanisms and burst buffers
that are typical in modern HPC deployments absorb most of the read requests once the file
has been written. Therefore, the load imbalance is mainly due to write requests [127, 151].
The traced data is processed by the parser and converted into a readable (comma separated)
.csv format file. This file is then sent to the prediction library (ARIMA Inspired Prediction
Algorithm discussed in the next section). The tracing tool is lightweight and our tests show
that it adds a negligible memory and CPU overhead of ∼0.3% and <1%, respectively, during
application execution.

ARIMA-Inspired Prediction Algorithm

HPC applications have been known to show distinct I/O patterns [151]. Based on our
interactions with HPC practitioners, this predictability is expected for emerging applications
as well. We leverage this observation to model three key properties of HPC I/O, namely, write
bytes, stripe count, and MPI rank. We collect these parameters using the tracing tool on the
first run of an application to train our model. Previous works [19, 38, 39] present auto-tuning
approaches for MPI-IO and Lustre to learn and predict the I/O parameters for improving
read and write performance of HPC applications. These approaches use a range for Lustre
stripe-counts, I/O buffer sizes and I/O bandwidth of previous runs. We use AutoRegressive
Integrated Moving Average (ARIMA) model [48] to fit our multivariate time series data
and predict future values. Our choice of ARIMA is dictated by its performance and the
time-series nature of the write bytes and stripe count of the requests. We experimented with

108 Chapter 7. I/O Load Balancing for Big Data HPC Applications

several alternatives, such as the Markov Chain Model [170], to model the data. However,
ARIMA yielded better accuracy with lower memory and computing overhead. For example,
we observed a 99.1% accuracy in IOR data using ARIMA, while Markov chain model yielded
an accuracy of 95.5%. The CPU overhead for ARIMA was less than 1.2% compared to 4.5%
in Markov Chain, while the memory usage for ARIMA is 10 MB in comparison to 90 MB
usage in Markov chain.

We implement our prediction model on the client side, where the calls would be intercepted,
rather than on MDS. This has two advantages: i) since each application has its own client,
the model can be applied at scale without overwhelming the centralized MDS; and (ii) the
approach makes the MDS application-agnostic, where the server can focus on write requests
and types in a global fashion and not be concerned with individual applications. The ap-
proach also provides for a much more efficient solution when multiple applications run on
(multiple) clients simultaneously.

A time series is defined as a sequential set of data points, measured typically over successive
times. It is represented as a set of vectors x(t), t = 0, 1, 2..., where t is the elapsed time [45].
The term ARIMA involves three parts, AR denotes that the variable is regressed on its prior
values, I stands for ‘integrated’, which means that the data values are replaced with the
difference between the present and previous values, and MA represents the fact that the
regression error is a linear combination of error terms occurring in the past. There are
three parameters used for every ARIMA model. The parameter ‘p’ is the number of lag
observations (lag order), ‘d’ denotes the number of times raw observations are differenced
(degree of differencing), and ‘q’ represents the size of moving average window (order of
moving average).

The first step is to select the values of parameters (p, d, q). To this end, we run the model
on all combinations (skipping the ones that fail to converge) of the parameters over our
dataset, which we get from the tracing tool, and select the combination with the least Root
Mean Square Error (RMSE). We vary the values of p, d, and q from 0 to 5. We go from 0 to
5 for all the values because going beyond 5 would be computationally expensive. For HACC-
IO, the least RMSE was found for (5, 1, 2) and IOR gave the minimum RMSE for (2, 1,

1). The next step is to fit the ARIMA(p, q, d) model by exact maximum likelihood via
Kalman filters [84]. This fitted model is then used to predict the write bytes, stripe count,
and MPI rank values for future application I/Os. We use statsmodels.tsa.arima model

package in Python for our ARIMA implementation. Our results show a 98.3% accuracy in
HACC-I/O data and 99.1% accuracy in IOR data.

Configuration Manager

The configuration manager determines if an application is performing I/O in PFL or non-
PFL layout. It takes as input the predicted set of requests, containing the file name, stripe
count, write bytes, and MPI rank, which is given by the prediction model, and the file

7.3. System Design 109

File Name File Size Extent ID Extent Start Extent End Stripe Size Stripe Count MPI Rank
/mnt/lustre/ior/test.0 8589934592 1 0 134217728 134217728 1 0
/mnt/lustre/ior/test.0 8589934592 2 134217728 536870912 134217728 3 0
/mnt/lustre/ior/test.0 8589934592 3 536870912 2147483648 201326592 8 0
/mnt/lustre/ior/test.0 8589934592 4 2147483648 8589934592 402653184 16 0
/mnt/lustre/ior/test.1 8589934592 1 0 134217728 134217728 1 1
/mnt/lustre/ior/test.1 8589934592 2 134217728 536870912 134217728 3 1
/mnt/lustre/ior/test.1 8589934592 3 536870912 2147483648 201326592 8 1
/mnt/lustre/ior/test.1 8589934592 4 2147483648 8589934592 402653184 16 1

Table 7.2: Interaction database snapshot for IOR in FPP mode in PFL layout.

containing all PFL layouts for a client. If the file names or the application directory in the
predicted requests set match those in the PFL configuration file, the stripe size and stripe
counts for the file are set based on the PFL configuration. If there are no matches found for
the file name or the directory in the PFL configuration, then the layout is non-PFL. The
output of the configuration manager is the set of all predicted requests combined with the
corresponding stripe size, stripe count, and MPI rank of the files. This entire set is sent to
the interaction database. The stripe size for both layouts is calculated for all files in the
configuration manager based on the 64k-alignment constraint by Lustre, which is explained
below.

Lustre’s 64k-alignment constraint for stripe size Stripe size is an important param-
eter for load balancing in a distributed file system. Every stripe needs to be assigned to an
OST. Intuitively, in order to calculate stripe size, we can divide the total file size by the
stripe count. Both of these parameters are given as part of the input requests set in the
configuration manager. But calculating stripe size is non-trivial because Lustre imposes the
constraint that in order to place stripes into the allocated OSTs, stripe size should be even
multiples of 64k. We term 64k or 65536 bytes as Alignment Parameter (AP). This constraint
becomes a problem for files which are not AP aligned, for example when the total file size
is 803405824 bytes, which is not an even multiple of AP. We consider two ways to overcome
this constraint.

Method-I: This method assumes that we can allocate equal number of even multiples of AP
into the first (stripeCount - 1) number of OSTs, and the remaining even multiple of AP
goes into the last OST. Equation 7.1 gives the total allocation such that the stripes are AP
aligned. The first part of the equation is the placement on first (stripeCount - 1) number of
OSTs and the second part is the number of bytes written on the last OST.

writeBytes = (AP ∗ 2 ∗N ∗ (stripeCount− 1))+

(AP ∗ 2 ∗X)
(7.1)

where,

N =

⌊
writeBytes

AP ∗ 2 ∗ (stripeCount− 1)

⌋
(7.2)

110 Chapter 7. I/O Load Balancing for Big Data HPC Applications

The remaining number of bytes to be written on the last OST is then given by:

remainingBytes = writeBytes−
(AP ∗ 2 ∗ (stripeCount− 1))

(7.3)

Therefore,

X =

⌈
remainingBytes

AP ∗ 2

⌉
(7.4)

Note that we round down the allocation in the first (stripeCount - 1) number of OSTs and
round up the allocation in the last OST. Multiplication with 2 ensures that the stripe size
is an even multiple of AP. Stripe size for the last OST is (AP ∗ 2 ∗X), and for each of the
remaining OSTs is (AP ∗ 2 ∗N). However, a major drawback here is that this method does
not place the load evenly among all the OSTs. The number of bytes written on the last OST
will always be smaller compared to the bytes written on the other OSTs for a particular file.

Method-II: This method overcomes the drawback of the previous method by allocating even
multiple of AP in all the OSTs.

writeBytes = AP ∗ 2 ∗N ∗ stripeCount (7.5)

where,

N =

⌈
writeBytes

AP ∗ 2 ∗ stripeCount

⌉
(7.6)

Stripe size for all the OSTs is given by (AP ∗2∗N). Both methods ensure an even multiple of
64k-alignment of stripe size for all the stripes allocated in the stripeCount number of OSTs,
by allocating a slightly bigger file than was requested by the client. The second method
places all the stripes equally on all the OSTs but needs a bigger file to be allocated in
comparison to the first method. Thus, there is a trade-off between how big the file allocation
we can allow versus balancing all the stripes among the OSTs. Our results show that for a
766.175 MB file size, we allocated 833 KB (0.1%) bigger file using the second method and
63 KB (0.008%) more in the first method. We proceed with the second method because
in spite of allocating a little more than was requested by the client, this approach ensures
allocating equal stripes on all the OSTs. This would lead to similar load accesses from all
OSTs and OSSs, therefore approaching towards a load-balanced setup.

Interaction Database

The interaction database is a SQL database located on the Lustre clients. It serves as
the medium through which the MDS and clients interact with one another. First, the output
set from the configuration manager is stored in the database. Different tables are used
to store PFL and non-PFL layout files. Tables 7.2 and 7.3 show an example snapshot of

7.3. System Design 111

the interaction database for IOR in FPP mode with 2 processes each writing 8 GB in PFL
and non-PFL layout respectively. For PFL layout, we use the example PFL configuration
(Configuration 1), discussed in Section 7.2.1. As seen in Table 7.2, every file is associated
with all the extents specified in the PFL configuration. For each file, we store the file name,
the file size in bytes, the extent ID from the PFL configuration file, the corresponding start
and end range for the extent, stripe size, stripe count and the MPI rank. For non-PFL
layout, shown in Table 7.3, we store the file names, stripe size of the files, number of stripes
associated with every file, and the MPI Rank. The stripe size of the files is calculated using
the 64k-alignment parameter which is discussed in Section 7.3.2.

File Name Stripe Size Stripe Count MPI Rank
/mnt/lustre/ior/test.0 1073741824 8 0
/mnt/lustre/ior/test.1 1073741824 8 1

Table 7.3: Interaction database snapshot for IOR in FPP mode in non-PFL layout.

The MDS uses a scalable publisher-subscriber model via Zero message queue [86] to retrieve
the required contents from the interaction database. The pub-sub model helps in scaling to
a large number of clients [152]. The specific steps are discussed in Section 7.3.3. For our
implementation, we use MySQL 8.0.12 Community Server Edition. Our results show that
writing and retrieving data from the interaction database is very efficient, using <0.3% and
<0.4% of CPU and memory, respectively.

Placement Library

The placement library complements the prediction model by providing a lightweight, portable,
and user-friendly mechanism to access and apply the predicted file layout to an application’s
I/O workload (i.e., without any code modification). the placement library relies on function
interpositioning provided by the GNU dynamic linker to prioritize itself over standard system
calls, and the profiling interface to MPI (PMPI). Hence, it can be used by setting the envi-
ronment variable LD_PRELOAD to the path of the shared library. Metadata operations (e.g.,
open()) issued by the application are intercepted and redirected to the placement library.
Following the example layouts shown in Figures 7.6, 7.7, 7.8, and 7.9, the placement library
supports both non-PFL and PFL layouts for FPP and SSF.

For every I/O cycle, the placement library queries the interaction database via the MySQL
C API with the file name passed by the original metadata operation, fetches the matching
rows, and applies the predicted striping pattern to the file, if the file does not exist yet. To
facilitate this, Lustre provides a user library called llapi, which allows the user to describe
a specific striping pattern. However, the placement library cannot use llapi directly, since
it internally triggers open() calls, which would result in a continuous, recursive loop due to
nature of the preloading mechanism. Therefore, the placement library mimics the behavior

112 Chapter 7. I/O Load Balancing for Big Data HPC Applications

of llapi and communicates directly with the Lustre Logical Object Volume (LOV) client to
create the file metadata on the MDS, similarly to [137, 138, 196].

If the result returned by the MySQL query contains only one row, the non-PFL layout is
applied by allocating a Lustre file identifier and the corresponding Layout Extended Attributes
(Layout EA) on the MDS. For both FPP and SSF, the predicted striping pattern is applied
by initializing the Layout EA with the stripe count, stripe size, and list of OSTs retrieved
from the interaction database.

If the MySQL query returns more than one row, the PFL layout is utilized. For both FPP
and SSF, every row represents one non-overlapping extent for a given file. the placement
library iterates over all rows, allocates an array of sub-layout components (one for each file
extent), and applies the predicted striping pattern to the file by storing it in a composite
layout on the MDS. Composite layouts, unlike Layout EA, allow the specification of different
specific striping patterns for different ranges (i.e., extents) in the same file.

Algorithm 8 presents a simplified overview of the placement library, which is run on every
client. It currently supports POSIX I/O, MPI-IO, and HDF5 and the following I/O calls:
open[64](), creat[64](), MPI_File_open(), and H5Fcreate(). The key advantage of
this transparent approach is that applications can directly benefit from the prediction model
without modifying the source code.

Algorithm 8: File layout creation on the MDS.

Input: File Name file, Access mode flags
Output: Call to real metadata operation (e.g., open())
begin

if fileExits(file) == TRUE then // File exits; return.
return realMetadataOperation(file, flags)

flags = flags | O LOV DELAY CREATE

result = queryInteractionDatabase(file)
if numMySQLrows(result) == 1 then // Non-PFL layout.

row = fetchMySQLrow(result)
layoutEA = allocLayoutEA(row.stripeCount, row.stripeSize, row → OSTs)
createLayoutEAonMDS(file, flags, 0644, layoutEA)

else if numMySQLrows(result) > 1 then // PFL layout.

while row = fetchMySQLrow(result) do
allocExtentPFL(layoutPFL, row.extentEnd, row.stripeCount,
row.stripeSize, row → OSTs)

createCompositeLayoutMDS(file, flags, 0644, layoutPFL)

return realMetadataOperation(file, flags)

7.3. System Design 113

7.3.3 Server-Side Components

In the following, we describe the components that run on the servers (OSSs and MDS) and
how they interact with each other.

Statistics Collector on OSS

Statistics collection is done for every OSS. The list of all the OSTs for a particular OSS
is saved in a configuration file that is provided as input to the statistics collector

for that specific OSS along with the OSS ID. For every OST, we collect the total and
available capacity, found in the files /proc/fs/lustre/obdfilter/ost name/kbytestotal and
/proc/fs/lustre/obdfilter/ost name/kbytesavail, respectively. We also collect the CPU
and memory utilization of the OSS by reading data from the files /proc/meminfo and
/proc/loadavg. The statistics collection algorithm runs every 60 seconds on all the OSSs.
We choose 60 seconds as our interval for statistics collection so that we get updated statistics
on the MDS without over-loading the OSSs. These statistics are sent to the MDS.

The load monitoring (statistics collection) solution needs to be scalable. Therefore, we
use a publisher-subscriber model [152] for the statistics collection framework. OSSs act
as publishers and MDS as the subscriber. Statistics collected in the OSSs are sent to the
MDS via a message queue. We use ZeroMQ (φMQ) [86] as our message queue because it is
lightweight and has been shown to be very efficient at large scale [151, 152, 153, 196]. We
also collect the CPU and memory utilization of the MDS every 60 seconds, in the same way
as it is collected in the OSSs. Our tests with the implementation show that the statistics
collection framework on average has negligible CPU and 0.1% memory utilization on the
OSSs, and 0.6% CPU and 0.1% memory on the MDS.

Statistics Collector on MDS

The statistics collector on the MDS is responsible for the following:

• Collecting statistics from the MDS.

• Subscribing to statistics from the OSSs via ZeroMQ.

• Parsing all the collected statistics.

The CPU and memory utilization collected in the MDS is important to determine when the
OST allocation algorithm will run. The OST allocation algorithm runs only if the CPU
utilization is lower than 70% and memory utilization is lower than 50%. This is done so that
the load balancing algorithm does not disrupt the normal functionalities of Lustre’s MDS.
The collected statistics from the MDS and OSSs are parsed and is sent as input to the OST

114 Chapter 7. I/O Load Balancing for Big Data HPC Applications

File Name File Size EID Extent Start Extent End Stripe Size #Stripe MPI Rank OST List
test.0 8589934592 1 0 134217728 134217728 1 0 10
test.0 8589934592 2 134217728 536870912 134217728 3 0 24 29 34
test.0 8589934592 3 536870912 2147483648 201326592 8 0 15 2 28 25 11 21 7 33
test.0 8589934592 4 2147483648 8589934592 402653184 16 0 14 23 16 30 1 6 4 26 ...
test.1 8589934592 1 0 134217728 134217728 1 1 24
test.1 8589934592 2 134217728 536870912 134217728 3 1 13 9 29
test.1 8589934592 3 536870912 2147483648 201326592 8 1 22 11 35 21 5 7 17 10
test.1 8589934592 4 2147483648 8589934592 402653184 16 1 14 23 16 30 1 6 15 4 ...

Table 7.4: Interaction database snapshot showing OST allocation for IOR in FPP mode in
PFL layout.

File Name Stripe Size Stripe Count MPI Rank OST List
/mnt/lustre/ior/test.0 1073741824 8 0 30 20 5 1 22 35 14 23
/mnt/lustre/ior/test.1 1073741824 8 1 20 19 1 9 29 2 33 18

Table 7.5: Interaction database snapshot showing OST allocation for IOR in FPP mode in
non-PFL layout.

allocation algorithm (Section 7.3.3). Our results show that the statistics collector on the
MDS has a CPU utilization of 0.1% and negligible memory utilization.

OST Allocation Algorithm

The input to the OST allocation algorithm is the parsed OSS and OST statistics, and
the write requests (file name, stripe size and stripe count) sent by the clients.

Algorithm 9: Obtaining list of OSTs for each request.
Input: OSS statistics cpu & mem, OST statistics totalKbytes & kbytesAvail, Write Requests stripeSize & stripeCount
Output: OSTAllocationList
begin

for OSS oss in OSSList do
ossLoad = (cpuweight ∗ cpu) + (memweight ∗mem)
for OST ost in OSTList do

ostCostToReach = OSSLoad
ostCost = (totalKbytes− kbytesAvail)/totalKbytes
ostCapacity = kbytesAvail/stripeSize

flowGraph = buildGraph(Requests, OSS, OST)
OSTAllocationList = minCostMaxFlow(flowGraph)
return (OSTAllocationList)

Function buildGraph
Input: Requests req, StripeCount sc, OSTCostToReach ossLoad, ostCost ostLoad, OSTCapacity ostCap
Output: FlowGraph G
totalDemand = sum of stripeCount for all Requests
G.addNode(‘source’, totalDemand)
G.addNode(‘sink’, -totalDemand)
for request r in reg do

G.addEdge(‘source’, r, cost = 0, capacity = sc)
for OST ost in ostList do

G.addEdge(r, ost, cost = ossLoad, capacity = 1)

for OST ost in ostList do
G.addEdge(ost, ‘sink’, cost = ostLoad, capacity = ostCap)

return (G)

Algorithm 9 shows the the OST allocation algorithm, which employs a minimum-cost maximum-

7.3. System Design 115

flow approach [20]. The flow graph that is used to solve the problem is shown in Figure 7.10.
We calculate the cost to reach an OST (which is the load of the OSS), the cost of an OST
(ratio of bytes already used in the OST to the total size of the OST), and the capacity
of an OST (the number of stripes that can be handled by the OST, given by the ratio of
available space in the OST to the stripe size). In order to derive the flow graph, we need
to identify the source and sink nodes. The total demand for the source node is the total
number of stripes requested, and the total demand for the sink node is the negative amount
of the total number of stripes requested. We solve the minimum-cost maximum-flow using
the Ford-Fulkerson algorithm [188]. This outputs a list of OSTs (OSTAllocationList) using
which will yield a balanced load over both OSS and OSTs. For our implementation, we use
the networkx library in Python. Our results show that the algorithm on average uses 1.58%
CPU and 0.1% memory on the MDS.

The list of OSTs obtained from the OST allocation algorithm are then sent to the respective
clients using the publisher-subscriber model via ZeroMQ. The complete set of requests are
stored in the interaction database. Example entries for the database with the complete
allocation for an IOR application in FPP mode with 2 processes each writing an 8 GB
file in both PFL (Configuration 1) and non-PFL layouts are shown in Tables 7.4 and 7.5
respectively. We add a new column OST List in the database. The OST List is a space
separated load-balanced list of OSTs for every write request. This example is for a setup
with 7 OSSs and 35 OSTs (5 OSTs associated with every OSS) – therefore, OST ids range
from 1 to 35. As described earlier, the placement library then uses this information to
place the requests, thus completing the load-balanced allocation of resources. If for any
run of the application, the placement library is unable to find more than 50% of files in the
interaction database, miniRecorder, ARIMA prediction and OST Allocation Algorithm will
be executed again to update the interaction database.

Figure 7.10: Graph used in OST Allocation Algorithm.

Summary: Components run both on the client and server side of a Lustre deployment.
MiniRecorder runs on the clients during the first execution of an application (or if the
system cannot find prediction information for most of the accessed files) to capture its I/O
characteristics. Next, the traces are fed into the prediction model and the predicted set
of requests are provided to the configuration manager to check the file layout and calcu-

116 Chapter 7. I/O Load Balancing for Big Data HPC Applications

late the stripe size of the files. The client and server libraries interact using the interaction
database. Statistics collection on the OSS and MDS happens periodically. Whenever, the
interaction database is updated, it sends the new values to the MDS, which (if not over-
loaded) executes the OST allocation algorithm. The results are sent back to the inter-
action database. For subsequent application runs, the placement library intercepts the
application write/create calls, reads from the interaction database and writes the request to
a load-balanced set of OSTs.

7.4 Evaluation

We evaluate the efficacy of our approach using both a Lustre simulator and a live setup.
In the following, we first describe our simulator and experimentation methodology, then
compare our MCMF-based load balancing with the default Lustre OST allocation approach.

7.4.1 Methodology

Simulator

We have developed a discrete-time simulator based on the overall system design shown in
Figure 7.5 to test our approach at scale. The simulator has four key components closely mir-
roring those of Lustre’s OST, OSS, MDT, and MDS, which implement the various Lustre op-
erations and enable us to collect data about the system behavior. The MDS is also equipped
with multiple strategies for OST selection, such as round-robin, random, and MCMF. We
have implemented a wrapper component that enables communication between our various
simulator components. The wrapper is responsible for processing the input, managing the
MDS, OST, and OSS communication and data exchange, and driving the simulation. All
the network components in the simulator are modeled using Network Simulator (NS-3) [140].
The application traces collected from client side are modeled as clients in the simulator. In
our simulations, all initial conditions are the same at the start of any allocation strategy.
The parameters, number of OSSes, number of OSTs under each OSS are provided as inputs
to the simulator.

Cluster Setup

We also conducted experiments on a small Lustre 2.8.0 setup to determine how the various
components interact. The client node has 8 cores, 2.5 GHz Intel processor, 64 GB memory,
and 500 GB HDD. MDS and two OSSes have 32 cores, 2.0 GHz AMD processors, 64 GB
memory, and 1 TB HDD. All components are connected through a 10 Gbps Ethernet in-
terconnect. We have set 6 OSTs in each OSS, each with 170 GB available disk space and

7.4. Evaluation 117

1 MDT in the MDS with a disk space of 100 GB. For real setup test, we repeated each
experiment three times, and report the average results.

Workloads

To drive our simulations, we collect application traces at the client side. These application
traces contain two kinds of data: (a) write entries, which have the timestamp, the number
of bytes to be written, and the number of OSTs to be selected (i.e. the stripe count); and
(b) read entry, which has the timestamp, number of bytes to be read and the OST ID from
which the bytes have to be read.

To model the behavior of a real Lustre deployment, we run and capture a trace of 3 simulta-
neously running big data hpc applications on a production Lustre deployment. We use the
HACC I/O kernel [120] that measures the I/O performance of the system for the simulation
of Hardware Accelerated Cosmology Code (HACC) generating around 12000 file events per
second, and the IOR benchmark [121] that is used for testing the performance of parallel
file systems which generates around 20000 events per second. The third trace is generated
from a high performance computing transaction processing application running at a large
financial institution [190]. This trace generates about 15000 file events per second. For our
tests (except the scalability study), we simulate the behavior of one MDS, eight OSSes with
four OSTs per OSS, for a total of 32 OSTs. We also use our real-setup test to verify the
results from the simulator.

7.4.2 Comparison of Load Balancing Approaches

We compare our MCMF based OST load balancing with the standard Lustre round-robin
approach, as well as weighted random allocation where OSTs are selected at random from
a subset of OSTs. Our random allocation model picks a random OST from a subset of the
OSTs whose ratio of available space to total disk space is greater than 0.4. The goal is to
remove the OSTs with less available space from the eligible list of OSTs to serve the request.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20 22 24

M
ax

/M
ea

n
O

S
T

 L
oa

d

Hours

Default Random MCMF

Figure 7.11: Max/Mean
OST load over time in
simulated setup.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16 18 20 22 24

M
ax

/M
ea

n
O

S
S

 L
oa

d

Hours

Default Random MCMF

Figure 7.12: Max/Mean
OSS load over time in
simulated setup.

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12

M
ax

 C
P

U
%

Hours

Pub-Sub Markov MCMF

Figure 7.13: Max CPU%
on MDS over 12 hours in
real setup.

118 Chapter 7. I/O Load Balancing for Big Data HPC Applications

1 3 5 7 9 11 14 17 20 23

0.
96

1.
00

Time (Hours)

N
or

m
al

iz
ed

 C
ap

ac
ity

Figure 7.14: Capacity of
all OSTs over time un-
der MCMF in simulated
setup.

1 3 5 7 9 11 14 17 20 23

0.
98

1.
00

1.
02

Time (Hours)

N
or

m
al

iz
ed

 C
ap

ac
ity

Figure 7.15: Capacity of
all OSTs over time under
MCMF in real setup.

 0

 1

 2

 3

 4

 5

160 480 800 1024 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Number of OSTs

Round Robin
Markov + MCMF

Figure 7.16: Execution
time with increasing num-
ber of OSTs in simulated
setup.

We measure the load balancing in our setup by plotting the ratio of the maximum disk space
used to the mean disk space used over time. The ratio should tend to 1 for a load balanced
setup. As seen from Figure 7.11, over a period of 24 hours, the random allocation gives
the worst result as the ratio starts from 125, which is much more than the starting ratio in
round-robin allocation. In contrast, we get better result with the MCMF allocation scheme.
The ratio starts from 52 and has a steady decline to 1 in only 7 hours compared to 12 hours
in round robin allocation.

In addition to balancing the load across OSTs, our objective is to also load balance the
OSSes’ CPU utilization—which is ignored under extant round-robin. Figure 7.12 shows the
max/mean CPU utilization ratio of OSSes over a period of 24 hours. We see a better load
balance in MCMF compared to round-robin and random allocations with a smoother decline
of the ratio to 1 in 7 hours compared to 20 hours under round-robin strategy.

Our objective is to load balance OSTs such that every OST is at an almost similar state (in
terms of number of bytes available, and load) under various file allocations. Since capacity
of OSTs continuously decreases over time, we use normalized capacity where for every hour,
the capacities of all OSTs are divided by the median capacity. Figure 7.14 shows the box-
plot for normalized capacity vs. time for 23 hours under our approach. When comparing
this with the round robin approach (Figure 7.4), we see that the inter-quartile ranges for
MCMF are less wider than those for round-robin allocation. This shows that at any given
time, MCMF is better able to balance load across OSTs.

We repeat the test on the real setup, and see a similar trend of Max/Mean load on both OSSes
(CPU utilization) and OSTs (disk usage) as shown in Figures 7.11 and 7.12. Figure 7.15
shows the normalized capacity over time. The difference in the interquartile ranges in the
box plots and a fewer number of outliers is due to the fact that on the real setup, we run
2 applications; IOR and HACC I/O kernel, compared to 3 applications being run on the
simulator. The experiment on the real setup also shows that our approach gives better
results on the real setup as well.

On the real setup, we also track on the MDS the CPU and memory utilization of our system

7.4. Evaluation 119

components, i.e., the publisher-subscriber model, Markov model, and the minimum-cost
maximum-flow algorithm. Figure 7.13 shows the maximum CPU utilization on MDS for a
period of 12 hours over intervals of 30 minutes for our three components. The maximum
CPU utilization is 1.3%, 3.8% and 6.5%, and the maximum memory utilization (not shown in
a graph) on MDS are 15.2 MB, 75 MB and 200 MB for publisher-subscriber model, MCMF
algorithm, and Markov model, respectively. On OSS, the CPU and memory utilization for
the publisher never exceeds 1% and 12 MB, respectively. This shows that our approach
requires negligible resources and can easily coexist with Lustre at scale. The Markov model
component has the highest CPU and memory utilization, and to keep that in check, we
designed the system to train the model and run MCMF algorithm only when the Lustre
CPU utilization on MDS goes below a preset threshold (70% in our tests) to avoid any
impact on data path performance.

7.4.3 Scalability Study

 0

 2

 4

 6

 8

 10

 12

 14

PCA KMeans SQL

Ex
ec

ut
io

n
tim

e
(m

in
)

CHOPPER
Spark

Figure 7.17: Performance with increasing number of OSTs in simulated setup: 160 OSTs
(20 OSS), 480 OSTs (60 OSS), 800 OSTs (100 OSS), 1024 OSTs (128 OSS) and 3600 OSTs
(450 OSS).

In our next experiment, we test how our approach will work with higher number of storage
targets. For this purpose, we use a setup with an increasing number of OSTs from 160 to
3600.

In our simulations, in order to calculate the I/O bandwidth, all OSTs are assigned the same
bandwidth at the start. The simulator also takes into account the number of applications
using a particular OST at a given timestamp and calculates the read and write bandwidth
accordingly. We assume that OSTs have equal read and write bandwidth. Figure 7.17 shows
the overall mean I/O bandwidth for Lustre’s default round-robin approach as well as our
MCMF algorithm. As the number of OSTs increases, the mean bandwidth also increases for
both the algorithms. Our algorithm provides better performance than round-robin solution
even for higher number of OSTs. As seen from the figure, MCMF allocation is able to

120 Chapter 7. I/O Load Balancing for Big Data HPC Applications

achieve up to 54.5% (under 800 OSTs) performance improvement compared to the default
round-robin approach.

The overall execution time for load balancing using both round-robin approach as well as
our algorithm (Markov model along with MCMF) is shown in Figure 7.16. Round-robin
takes less time than our approach to allocate OSTs to incoming requests, but the difference
between both execution times keeps on decreasing as we increase the number of OSTs. This
is because, the increase in execution time with increase in the number of OSTs is much
higher in Round-robin than MCMF. This shows that our approach is more scalable. The
gain in the overall performance as shown in Figure 7.17 is much higher than the gain in
execution time, even for fewer number of OSTs.

The tests show that MCMF algorithm provides better load balanced allocation of OSTs
with improved performance compared to Lustre’s default round-robin allocation. Also, the
performance of our algorithm does not degrade even with very large number of OSTs. More-
over, with higher number of OSTs, the execution time for our approach to allocate OSTs
to requests is similar to that of Lustre’s default round-robin approach. This is seen in Fig-
ure 7.17, where even for higher number of OSTs, MCMF performs better than the standard
approach. Note that the difference in the CPU utilization on MDS when using the de-
fault round-robin allocation compared to when MCMF algorithm along with Markov chain
model was being executed never exceeds 7.3%. Therefore, the benefits achieved by MCMF
algorithm over standard round-robin allocation is achieved at a manageable cost, which is
further amortized by the overall application I/O improvement resulting from the better load
balanced setup.

7.5 Chapter Summary

We have presented a load balancing approach for extreme-scale distributed storage systems,
such as Lustre, where we enable the system to have a global view of the hierarchical structure
and thus make more informed and load-balanced resource allocation decisions. We design a
global mapper to be located in MDS of Lustre, which uses a publisher-subscriber model to
collect runtime statistics of the various components in the I/O system by piggybacking the
data on existing communication, employs Markov chain model to predict future application
requests based on past behavior, and a minimum-cost maximum-flow algorithm to select
OSTs in a load-balanced fashion. Experiments show that our approach provides a better
load balanced solution for both OSSes and OSTs than the extant round-robin approach used
in Lustre. This will lead to better end-to-end performance for HPC big data applications.
In our future work, we plan to incorporate our solution into other systems such as Ceph and
GlusterFS, as well as study our approach under different failure scenarios.

Chapter 8

Conclusion and Future Work

A key goal of this dissertation is to build an application-attuned framework for HPC storage
systems that will mitigate real-world data management problems. In this dissertation, we
have successfully applied the application-awareness principle and methodology to uncover
critical issues in distributed and data-intensive systems. Investigations have led to the design
and development of effective and novel approaches to solve these problems. For example, to
the best of our knowledge, FSMonitor [153] - a scalable file system monitor for large scale
storage systems is the first monitor that can be scaled and used on arbitrary storage systems.

This dissertation is driven by the complexities of modern high performance computing and
data-intensive systems, and the need for more efficient and flexible approaches to manage
such complexities. The work of this dissertation targets three real-world HPC storage sys-
tems: Apache Spark [211] - an in-memory data analytics framework, Lustre [47] - a hugely
popular parallel file system, and Ceph [201] - an open-source and widely-used object stor-
age system. We use real-work applications - SparkBench [112], Hacc-IO [120], FSMark [8],
MDTest [13], and IOR [121]. By performing extensive and deep analysis to understand the is-
sues [157], designing optimization framework [163], practical tools for monitoring [153, 156]
and indexing [159] to efficiently make use of complex application behaviors, and building
“end-to-end” efficient systems [151, 158, 196] to manage different tradeoffs and the massive
volume of data, this dissertation demonstrates improved efficiency and usability of HPC
storage systems at the system level with a broad focus on practical and user-centric metrics.

8.1 Summary

High performance computing (HPC) storage systems are increasingly becoming important.
According to a recent report from National Energy Research Scientific Computing Center
(NERSC) [14], over the past 10 years, the total volume of data stored at NERSC has grown
at an annual rate of 30 percent. This massive rate of data generation has resulted in an in-

121

122 Chapter 8. Conclusion and Future Work

creasing need for high performance distributed storage systems like Apache Spark [211, 212],
Ceph [201] and Lustre [47]. The dependency on HPC storage systems has resulted in input-
output (I/O) operations becoming the bottleneck for application performance. Massively
parallel HPC applications can suffer from imbalance in computation and I/O performance,
with I/O operations becoming a limiting factor in application efficiency [105]. To mitigate
this problem, this dissertation using a holistic redesign approach that cohesively combines
piece-by-piece optimizations provides an effort to implement application-attuned framework
for high performance storage systems to support the I/O needs of HPC applications.

We first understand the I/O behavior of HPC applications which is very important for system
administrators, file system developers, and HPC users. We collected Lustre file system
server level statistics from two clusters, Cab and Quartz at Lawrence Livermore National
Laboratory, for a period of three years and analyzed the statistics in an application-agnostic
manner. Our studies have indicated interesting results which show that most jobs are write-
intensive, showing the importance of improving file system write performance. Our analysis
also led us to believe that focus should be on jobs which run for short duration as the majority
of the jobs run for less than an hour. Also, there should be efforts to educate HPC users to
develop applications which perform efficient writes. This would improve I/O performance as
well as help in reducing I/O contention among jobs. We believe that our analysis will help
all HPC practitioners to build better file systems and utilize it more effectively.

Second, we design a dynamic partitioning approach for in-memory data analytic platforms
by determining the optimal number of partitions and the partitioner for each stage of a
running workload with the goal of minimizing the stage execution time and shuffle traffic.
We also consider the dependencies between stages, including join and co-group operations,
to further reduce shuffle traffic. By minimizing the stage execution time and shuffle traffic,
the design implicitly alleviates the task data skew using different partitioners and improves
the task resource utilization through optimal number of partitions. Experimental results
demonstrate that Chopper effectively improves overall performance by up to 35.2% for
representative workloads compared to standard vanilla Spark.

This dissertation then tackles the issue of trying to monitor HPC storage systems by building
a generic and scalable file system monitor for capturing and reporting events on heteroge-
neous large-scale storage systems. The design uses a three-layer approach to file system
event monitoring. It implements a standard event definition process for any file system, and
works seamlessly for both parallel file systems and object stores. We evaluated our approach
on three Lustre file system testbeds and a 8 TB Ceph store. We found that on a 897 TB
Lustre system, it reported almost 38 000 events per second with low resource utilization.
On the 8 TB Ceph system, FSMonitor reported more than 2000 events per second. Com-
pared to iterative monitoring methods used by the popular Robinhood system, our design
achieves a 14.5% improved event reporting rate for multiple Lustre MDSs. It also performs
well for metadata benchmarks. We also did not notice any performance degradation in data
benchmarks when using our monitor. Finally, we also demonstrated order-of-magnitude
improvements in large-scale file system re-indexing times when using our scalable monitor.

8.2. Future Directions 123

Next, we build a metadata indexing tool for large-scale HPC storage systems which has an
in-tree design and uses a parallel leveled partitioning approach to partition the file system
namespace into disjoint sub-trees which can be indexed in parallel. Our indexer maintains
an internal metadata index database which uses a 2-level database sharding technique to
increase indexing and querying performance. It also uses a changelog-based approach to
keep track of the metadata changes and re-index the file system. Our design is evaluated
on a 4.8 TB Lustre storage system and is compared with state-of-the-art GUFI and Robin-
hood engines. Our indexer improves the indexing performance by 69% and the querying
performance by 91% with optimal resource utilization.

Finally, this dissertation builds an “end-to-end control plane” to optimize HPC storage
systems by providing efficient load balancing across storage servers. Our proposed system
provides global view of the system, enables coordination between the clients and servers, and
handles the performance degradation due to resource contention by considering operations
on both clients as well as servers. Our implementation provides a balanced distribution
of load over OSTs and OSSs in the Lustre file system, and is able to handle both PFL
and non-PFL layouts for files. We evaluated our system on a real Lustre testbed using two
representative benchmarks—IOR and HACC-I/O—with multiple stripe counts of files as well
as SSF and FPP accesses. Compared to the default Lustre RR policy, our design provides up
to 33% improvement in balancing the load. Moreover, we also observed an I/O performance
improvement of up to 43% for reads without affecting the performance for writes. Finally,
the transparent design of our load balancer makes it attractive for adoption in real-world
deployments.

8.2 Future Directions

This dissertation is focused on practical problems that exist in HPC storage systems. We
are particularly interested in designing systems with high efficiency and flexibility and better
security, and extend our understanding in cyber-physical systems and ubiquitous computing.
In the following, We discuss several future directions as an extension to this dissertation.

8.2.1 ML for I/O and I/O for ML

With the rise of machine learning (ML) frameworks, there is an increasing need for opti-
mizations in ML workloads in the HPC environment. Therefore, there is a need to analyze
the I/O patterns in ML workloads and optimize HPC storage systems for ML. Additionally,
with the rise in the popularity in deep learning and other ML frameworks, the optimizations
should involve using ML technologies to use the enormous amounts of I/O traces to predict
I/O requests from a diverse set of applications and then make HPC storage systems efficient
and application-attuned.

124 Chapter 8. Conclusion and Future Work

8.2.2 Edge Computing and Federated Learning

Internet of Things holds tremendous advantages for human society. As computing capacity
of Edge devices is increasing, trend to perform computing on the Edge devices is also gaining
traction. With the rise in popularity of federated learning, existing edge computing frame-
works lacks in optimizing I/O for such huge influx of real-time data. Also, the heterogeneity
in IoT resources add additional challenge in optimization. We need to think about novel
approaches to optimize I/O in a very very minimalistic resource utilization manner for the
emerging IoT.

8.2.3 Containers in HPC

Containers are experiencing massive growth as the deployment unit of choice in a broad range
of applications from enterprise to web services. Containers offer highly desirable features:
they are lightweight, comprehensively capture dependencies into easy-to-deploy images, pro-
vide application portability, and can be scaled to meet application demands. Modern DL/ML
software stacks are complex and bespoke, with no two setups exactly the same. Therefore,
the use of containers is being explored in the HPC environment, and have produced benefits
for large scale image processing, DL/ML workloads. In addition to meeting the computing
needs of HPC applications, containers have to support the dynamic I/O requirements and
scale, which introduce new challenges for data storage and access [18]. Therefore, there needs
to be analysis and optimization frameworks for effective use of containers in HPC.

Bibliography

[1] ATLAS project. https://iopscience.iop.org/article/10.1088/1748-0221/3/

08/S08003. Accessed: June 20 2020.

[2] Aurora Supercomputer. https://aurora.alcf.anl.gov/. Accessed: August 26 2019.

[3] BorgFS. https://www.snia.org/educational-library/borgfs-file-system-

metadata-index-search-2014. Accessed: December 7 2019.

[4] Ceph User Survey, . https://ceph.io/ceph-blog/ceph-user-survey-2018-

results/. Accessed: June 20 2020.

[5] Ceph Users, . https://ceph.io/users/. Accessed: June 20 2020.

[6] Cray - Clusterstor. https://www.cray.com/products/storage/clusterstor. Ac-
cessed: June 20 2020.

[7] Flame Graph. http://www.brendangregg.com/flamegraphs.html. Accessed: De-
cember 7 2019.

[8] FS Mark. https://sourceforge.net/projects/fsmark/. Accessed: June 20 2020.

[9] GUFI. https://github.com/mar-file-system/GUFI. Accessed: November 30 2019.

[10] Ian Shields, IBM - Monitor Linux file system events with inotify. https://developer.
ibm.com/tutorials/l-inotify/. Accessed: March 7 2019.

[11] LFS Find. http://manpages.ubuntu.com/manpages/precise/man1/lfs.1.html.
Accessed: December 10 2019.

[12] OpenSFS and EOFS - Lustre file system. http://lustre.org/. Accessed: March 23
2019.

[13] MDTest. https://github.com/hpc/ior/blob/master/src/mdtest.c. Accessed:
June 20 2020.

125

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
https://aurora.alcf.anl.gov/
https://www.snia.org/educational-library/borgfs-file-system-metadata-index-search-2014
https://www.snia.org/educational-library/borgfs-file-system-metadata-index-search-2014
https://ceph.io/ceph-blog/ceph-user-survey-2018-results/
https://ceph.io/ceph-blog/ceph-user-survey-2018-results/
https://ceph.io/users/
https://www.cray.com/products/storage/clusterstor
http://www.brendangregg.com/flamegraphs.html
https://sourceforge.net/projects/fsmark/
https://github.com/mar-file-system/GUFI
https://developer.ibm.com/tutorials/l-inotify/
https://developer.ibm.com/tutorials/l-inotify/
http://manpages.ubuntu.com/manpages/precise/man1/lfs.1.html
http://lustre.org/
https://github.com/hpc/ior/blob/master/src/mdtest.c

126 BIBLIOGRAPHY

[14] NERSC Report. https://www.nersc.gov/news-publications/nersc-news/nersc-
center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-

vision/. Accessed: Nov 30 2019.

[15] MezzFS — Mounting object storage in Netflix’s media processing plat-
form. https://netflixtechblog.com/mezzfs-mounting-object-storage-in-

netflixs-media-processing-platform-cda01c446ba. Accessed: June 20 2020.

[16] Top 500 List. https://www.top500.org/lists/2019/11/. Accessed: November 30
2019.

[17] Why Ceph? https://searchstorage.techtarget.com/feature/5-Ceph-storage-

questions-answered-and-explained. Accessed: June 20 2020.

[18] Subil Abraham, Arnab K Paul, Redwan Ibne Seraj Khan, and Ali R Butt. On the use of
containers in high performance computing environments. In 2020 IEEE International
Conference on Cloud Computing (CLOUD), pages 1–10. IEEE, 2020.

[19] Megha Agarwal, Divyansh Singhvi, Preeti Malakar, and Suren Byna. Active learning-
based automatic tuning and prediction of parallel i/o performance. In 2019 IEEE/ACM
Fourth International Parallel Data Systems Workshop (PDSW), pages 20–29. IEEE,
2019.

[20] Ravindra K Ahuja. Network flows: theory, algorithms, and applications. Pearson
Education, 2017.

[21] Rachana Ananthakrishnan, Ben Blaiszik, Kyle Chard, Ryan Chard, Brendan McCol-
lam, Jim Pruyne, Stephen Rosen, Steven Tuecke, and Ian Foster. Globus platform
services for data publication. In Practice and Experience on Advanced Research Com-
puting, page 14. ACM, 2018.

[22] Ali Anwar. Towards Efficient and Flexible Object Storage Using Resource and Func-
tional Partitioning. PhD thesis, Virginia Tech, 2018.

[23] Ali Anwar, KR Krish, and Ali R Butt. On the use of microservers in supporting
hadoop applications. In Cluster Computing (CLUSTER), 2014 IEEE International
Conference on, pages 66–74. IEEE, 2014.

[24] Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R Butt. Taming the cloud object
storage with mos. In Proceedings of the 10th Parallel Data Storage Workshop, pages
7–12. ACM, 2015.

[25] Ali Anwar, Anca Sailer, Andrzej Kochut, and Ali R Butt. Anatomy of cloud monitoring
and metering: A case study and open problems. In Proceedings of the 6th Asia-Pacific
Workshop on Systems, page 6. ACM, 2015.

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-vision/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-vision/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-vision/
https://netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-processing-platform-cda01c446ba
https://netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-processing-platform-cda01c446ba
https://www.top500.org/lists/2019/11/
https://searchstorage.techtarget.com/feature/5-Ceph-storage-questions-answered-and-explained
https://searchstorage.techtarget.com/feature/5-Ceph-storage-questions-answered-and-explained

BIBLIOGRAPHY 127

[26] Ali Anwar, Anca Sailer, Andrzej Kochut, Charles O Schulz, Alla Segal, and Ali R Butt.
Cost-aware cloud metering with scalable service management infrastructure. In Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on, pages 285–292.
IEEE, 2015.

[27] Ali Anwar, Anca Sailer, Andrzej Kochut, Charles O Schulz, Alla Segal, and Ali R Butt.
Scalable metering for an affordable it cloud service management. In Cloud Engineering
(IC2E), 2015 IEEE International Conference on, pages 207–212. IEEE, 2015.

[28] Ali Anwar, Salman A Baset, Andrzej P Kochut, Hui Lei, Anca Sailer, and Alla Segal.
Scalable metering for cloud service management based on cost-awareness, March 31
2016. US Patent App. 14/871,443.

[29] Ali Anwar, Yue Cheng, and Ali R Butt. Towards managing variability in the cloud. In
Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International,
pages 1081–1084. IEEE, 2016.

[30] Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R Butt. Mos: Workload-aware elasticity
for cloud object stores. In Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing, pages 177–188. ACM, 2016.

[31] Ali Anwar, Yue Cheng, Hai Huang, and Ali Raza Butt. Clusteron: Building highly con-
figurable and reusable clustered data services using simple data nodes. In HotStorage,
2016.

[32] Ali Anwar, Andrzej Kochut, Anca Sailer, Charles O Schulz, and Alla Segal. Dynamic
metering adjustment for service management of computing platform, March 31 2016.
US Patent App. 14/926,384.

[33] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongyoon Lee, Fred
Douglis, and Ali R Butt. bespo kv: application tailored scale-out key-value stores. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis, page 2. IEEE Press, 2018.

[34] Ali Anwar, Mohamed Mohamed, Vasily Tarasov, Michael Littley, Lukas Rupprecht,
Yue Cheng, Nannan Zhao, Dimitrios Skourtis, Amit S Warke, Heiko Ludwig, and
Ali. R. Butt. Improving docker registry design based on production workload analysis.
In 16th USENIX Conference on File and Storage Technologies, page 265, 2018.

[35] Ali Anwar, Lukas Rupprecht, Dimitris Skourtis, and Vasily Tarasov. Challenges in
storing docker images. login Usenix Mag., 44(3), 2019.

[36] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongyoon Lee, Fred
Douglis, and Ali R Butt. Customizable scale-out key-value stores. IEEE Transactions
on Parallel and Distributed Systems, 31(9):2081–2096, 2020.

128 BIBLIOGRAPHY

[37] Apple. File system events. https://developer.apple.com/library/

archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/

UsingtheFSEventsFramework/UsingtheFSEventsFramework.html, 2012. Accessed:
Sept, 2018.

[38] Ayse Bagbaba. Improving collective i/o performance with machine learning supported
auto-tuning. In The Fifteenth International Workshop on Automatic Performance
Tuning, 2020.

[39] Babak Behzad, Surendra Byna, and Marc Snir. Optimizing i/o performance of hpc
applications with autotuning. ACM Transactions on Parallel Computing (TOPC), 5
(4):1–27, 2019.

[40] Stefan Berchtold, Christian Böhm, Daniel A. Keim, and Hans-Peter Kriegel. A cost
model for nearest neighbor search in high-dimensional data space. In Proceedings of
the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’97, pages 78–86, New York, NY, USA, 1997. ACM. ISBN 0-89791-910-
6. doi: 10.1145/263661.263671. URL http://doi.acm.org/10.1145/263661.263671.

[41] Thomas William Bereiter. Software auditing mechanism for a distributed computer
enterprise environment, May 19 1998. US Patent 5,754,763.

[42] Tim Bisson, Yuvraj Patel, and Shankar Pasupathy. Designing a fast file system crawler
with incremental differencing. ACM SIGOPS Operating Systems Review, 46(3):11–19,
2012.

[43] Arthur S. Bland, Jack C. Wells, Otis E. Messer, Oscar R. Hernandez, and James H.
Rogers. Titan: Early experience with the Cray XK6 at Oak Ridge National Laboratory.
In Proceedings of Cray User Group Conference (CUG 2012), May 2012.

[44] Buddy Bland. Titan-early experience with the titan system at oak ridge national
laboratory. In High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 2189–2211. IEEE, 2012.

[45] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[46] Eric B Boyer, Matthew C Broomfield, and Terrell A Perrotti. Glusterfs one storage
server to rule them all. Technical report, Los Alamos National Laboratory (LANL),
2012.

[47] Peter J Braam and Rumi Zahir. Lustre: A scalable, high performance file system.
Cluster File Systems, Inc, 2002.

[48] Peter J Brockwell, Richard A Davis, and Matthew V Calder. Introduction to time
series and forecasting, volume 2. Springer, 2002.

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/UsingtheFSEventsFramework/UsingtheFSEventsFramework.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/UsingtheFSEventsFramework/UsingtheFSEventsFramework.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/UsingtheFSEventsFramework/UsingtheFSEventsFramework.html
http://doi.acm.org/10.1145/263661.263671

BIBLIOGRAPHY 129

[49] Kirk W Cameron, Ali Anwar, Yue Cheng, Li Xu, Bo Li, Uday Ananth, Thomas Lux,
Yili Hong, Layne T Watson, and Ali R Butt. Moana: Modeling and analyzing i/o
variability in parallel system experimental design. 2018.

[50] Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur, Julian Kunkel, and Thomas
Ludwig. Small-file access in parallel file systems. In 2009 IEEE International Sympo-
sium on Parallel & Distributed Processing, pages 1–11. IEEE, 2009.

[51] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine
Riley. 24/7 characterization of petascale i/o workloads. In 2009 IEEE International
Conference on Cluster Computing and Workshops, pages 1–10. IEEE, 2009.

[52] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert
Latham, and Robert Ross. Understanding and improving computational science stor-
age access through continuous characterization. ACM Transactions on Storage (TOS),
7(3):8, 2011.

[53] A Fernández Casanı, D Barberis, A Favareto, C Garcıa Montoro, S González de la Hoz,
J Hrivnác, F Prokoshin, J Salt, and J Sánchez. ATLAS EventIndex general dataflow
and monitoring infrastructure. Journal of Physics Conference Series, 898(6):062010,
2017.

[54] Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou, Nathalie Baracaldo,
Heiko Ludwig, and Yue Cheng. Towards taming the resource and data heterogeneity in
federated learning. In 2019 {USENIX} Conference on Operational Machine Learning
(OpML 19), pages 19–21, 2019.

[55] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo,
Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl: A tier-based federated
learning system. To appear in ACM Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2020.

[56] Ryan Chard, Kyle Chard, Jason Alt, Dilworth Y Parkinson, Steve Tuecke, and Ian
Foster. Ripple: Home automation for research data management. In 37th IEEE
International Conference on Distributed Computing Systems, 2017.

[57] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. funcx: A federated function serving fabric
for science. arXiv preprint arXiv:2005.04215, 2020.

[58] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Differentiated
graph computation and partitioning on skewed graphs. In Proc. ACM EuroSys, 2015.

[59] Yue Cheng. Workload-aware efficient storage systems. PhD thesis, Virginia Tech, 2017.

130 BIBLIOGRAPHY

[60] Yue Cheng, Zheng Chai, and Ali Anwar. Characterizing co-located datacenter work-
loads: An alibaba case study. arXiv preprint arXiv:1808.02919, 2018.

[61] John Cieslewicz and Kenneth A. Ross. Data partitioning on chip multiprocessors. In
Proc. ACM Data Management on New Hardware, 2008.

[62] James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey, III, Craig A.N.
Soules, and Alistair Veitch. Lazybase: Trading freshness for performance in a scalable
database. In EuroSys, pages 169–182, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1223-3. doi: 10.1145/2168836.2168854. URL http://doi.acm.org/10.1145/

2168836.2168854.

[63] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20
(3):273–297, 1995.

[64] Enrico M. Crisostomo. fswatch. https://github.com/emcrisostomo/fswatch, 2013.
Accessed: Sept, 2018.

[65] Breno Dantas Cruz, Arnab K Paul, and Eli Tilevich. Stargazer: A deep learning
approach for estimating the performance of edge-based clustering applications. In
2020 IEEE International Conference on Smart Data Services (SMDS), pages 1–10.
IEEE, 2020.

[66] Arjun Datta and Arnab Kumar Paul. Online compiler as a cloud service. In 2014
IEEE International Conference on Advanced Communications, Control and Computing
Technologies, pages 1783–1786. IEEE, 2014.

[67] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proc. USENIX OSDI, 2004.

[68] Shyam C Deshmukh and Sudarshan S Deshmukh. Improved load balancing for dis-
tributed file system using self acting and adaptive loading data migration process. In
4th International Conference on Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2015, pages 1–6. IEEE, 2015.

[69] Ananth Devulapalli, Dennis Dalessandro, Pete Wyckoff, Nawab Ali, and P Sadayap-
pan. Integrating parallel file systems with object-based storage devices. In SC’07:
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages 1–10. IEEE,
2007.

[70] Tim d’Hondt, Anna Wilbik, Paul Grefen, Heiko Ludwig, Natalie Baracaldo, and Ali
Anwar. Using bpm technology to deploy and manage distributed analytics in collabo-
rative iot-driven business scenarios. In Proceedings of the 9th International Conference
on the Internet of Things, pages 1–8, 2019.

http://doi.acm.org/10.1145/2168836.2168854
http://doi.acm.org/10.1145/2168836.2168854
https://github.com/emcrisostomo/fswatch

BIBLIOGRAPHY 131

[71] Bin Dong, Xiuqiao Li, Qimeng Wu, Limin Xiao, and Li Ruan. A dynamic and adaptive
load balancing strategy for parallel file system with large-scale i/o servers. Journal of
Parallel and Distributed Computing, 72(10):1254–1268, 2012.

[72] Jack Dongarra, Hans Meuer, and Erich Strohmaier. Top500 supercomputing sites.
http://www.top500.org, 2016.

[73] Facebook. Watchman: A file watching service. https://facebook.github.io/

watchman/, 2015. Accessed: Sept, 2018.

[74] Argonne Leadership Computing Facility. Intrepid system. URL https://www.alcf.

anl.gov/intrepid. Accessed: May 12 2019.

[75] Ian Foster, Ben Blaiszik, Kyle Chard, and Ryan Chard. Software Defined Cyberin-
frastructure. In The 37th IEEE International Conference on Distributed Computing
Systems (ICDCS), 2017.

[76] Rohan Gandhi, Di Xie, and Y. Charlie Hu. Pikachu: How to rebalance load in opti-
mizing mapreduce on heterogeneous clusters. In Proc. USENIX ATC, 2013.

[77] Dominic Giampaolo. Practical file system design with the Be file system. Morgan
Kaufmann Publishers Inc., 1998.

[78] Alexandra Glagoleva and Archana Sathaye. Load balancing distributed file system
servers: a rule-based approach. Web-Enabled Systems Integration: Practices and Chal-
lenges: Practices and Challenges, page 274, 2002.

[79] Gluster. Gluster-cloud storage for the modern data center, 2017.
http://moo.nac.uci.edu/ hjm/fs/AnIntroductionToGlusterArchitectureV7110708.pdf.

[80] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow frame-
work. In Proc. USENIX OSDI, 2014.

[81] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller, Feiyi Wang, and Dustin
Leverman. Comparative i/o workload characterization of two leadership class storage
clusters. In Proceedings of the 10th Parallel Data Storage Workshop, pages 31–36.
ACM, 2015.

[82] Marios Hadjieleftheriou, Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J Tso-
tras. R-trees: A dynamic index structure for spatial searching. Encyclopedia of GIS,
pages 1805–1817, 2017.

[83] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28
(1):100–108, 1979.

http://www.top500.org
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/
https://www.alcf.anl.gov/intrepid
https://www.alcf.anl.gov/intrepid

132 BIBLIOGRAPHY

[84] Andrew C Harvey. Forecasting, structural time series models and the Kalman filter.
Cambridge university press, 1990.

[85] John L Hennessy and David A Patterson. Computer architecture: a quantitative ap-
proach. Elsevier, 2011.

[86] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly, 2013.

[87] David W Hosmer Jr and Stanley Lemeshow. Applied logistic regression. John Wiley
& Sons, 2004.

[88] Windsor W Hsu and Alan Jay Smith. Characteristics of i/o traffic in personal computer
and server workloads. IBM Systems Journal, 42(2):347–372, 2003.

[89] Windsor W Hsu, Alan Jay Smith, and Honesty C Young. I/o reference behavior of
production database workloads and the tpc benchmarks—an analysis at the logical
level. ACM Transactions on Database Systems (TODS), 26(1):96–143, 2001.

[90] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian. Smartstore: a new metadata or-
ganization paradigm with semantic-awareness for next-generation file systems. In SC,
pages 1–12, Nov 2009. doi: 10.1145/1654059.1654070.

[91] Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power, Jorge Ortiz, Jinyang Li,
and Zhen Xiao. Spartan: A distributed array framework with smart tiling. In Proc.
USENIX ATC, 2015.

[92] InfluxData. Influxdb, . URL https://github.com/influxdata/influxdb. Accessed:
April 1 2019.

[93] InfluxData. Telegraf, . URL https://github.com/influxdata/telegraf. Accessed:
April 1 2019.

[94] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In Proc. ACM
Eurosys, 2007.

[95] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[96] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Yongseok Son, and Hyeonsang
Eom. Towards hpc i/o performance prediction through large-scale log analysis. In
Proceedings of the 29th International Symposium on High-Performance Parallel and
Distributed Computing, pages 77–88, 2020.

[97] Youngjae Kim, Raghul Gunasekaran, Galen M Shipman, David A Dillow, Zhe Zhang,
and Bradley W Settlemyer. Workload characterization of a leadership class storage
cluster. In 2010 5th Petascale Data Storage Workshop (PDSW’10), pages 1–5. IEEE,
2010.

https://github.com/influxdata/influxdb
https://github.com/influxdata/telegraf

BIBLIOGRAPHY 133

[98] Donghun Koo, Jik-Soo Kim, Soonwook Hwang, Hyeonsang Eom, and Jaehwan Lee.
Utilizing progressive file layout leveraging ssds in hpc cloud environments. In 2016
IEEE 1st International Workshops on Foundations and Applications of Self* Systems
(FAS* W), pages 90–95. IEEE, 2016.

[99] K. R. Krish, B. Wadhwa, M. S. Iqbal, M. M. Rafique, and A. R. Butt. On efficient
hierarchical storage for big data processing. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 403–408, 2016.

[100] KR Krish, Ali Anwar, and Ali R Butt. hats: A heterogeneity-aware tiered storage for
hadoop. In 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2014.

[101] KR Krish, Ali Anwar, and Ali R Butt. [phi] sched: A heterogeneity-aware hadoop
workflow scheduler. In Modelling, Analysis & Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2014 IEEE 22nd International Symposium on, pages
255–264. IEEE, 2014.

[102] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter, Kavita Bala,
and L. Paul Chew. Optimistic parallelism benefits from data partitioning. In Proc.
ACM ASPLOS, 2008.

[103] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skewtune:
Mitigating skew in mapreduce applications. In Proc. ACM SIGMOD, 2012.

[104] Argonne National Laboratory. Darshan - hpc i/o characterization tool. URL https:

//www.mcs.anl.gov/research/projects/darshan/. Accessed: May 12 2019.

[105] Samuel Lang, Philip Carns, Robert Latham, Robert Ross, Kevin Harms, and William
Allcock. I/o performance challenges at leadership scale. In Proceedings of the Confer-
ence on High Performance Computing Networking, Storage and Analysis, pages 1–12.
IEEE, 2009.

[106] Margaret Lawson and Jay Lofstead. Using a robust metadata management system to
accelerate scientific discovery at extreme scales. In 2018 IEEE/ACM PDSW-DISCS,
pages 13–23. IEEE, 2018.

[107] Thomas Leibovici. Taking back control of HPC file systems with Robinhood Policy
Engine. arXiv preprint arXiv:1505.01448, 2015.

[108] Jonathan Lemon. Kqueue – A generic and scalable event notification facility. In
USENIX Annual Technical Conference, FREENIX Track, pages 141–153, 2001.

[109] Andrew Leung, I Adams, and Ethan L Miller. Magellan: A searchable metadata
architecture for large-scale file systems. University of California, Santa Cruz, Tech.
Rep. UCSC-SSRC-09-07, 2009.

https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/

134 BIBLIOGRAPHY

[110] Andrew W Leung, Shankar Pasupathy, Garth R Goodson, and Ethan L Miller. Mea-
surement and analysis of large-scale network file system workloads. In USENIX annual
technical conference, volume 1, pages 5–2, 2008.

[111] Andrew W Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and Ethan L
Miller. Spyglass: Fast, scalable metadata search for large-scale storage systems. In
FAST, volume 9, pages 153–166, 2009.

[112] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. Sparkbench:
a comprehensive benchmarking suite for in memory data analytic platform spark. In
Proc. ACM International Conference on Computing Frontiers, 2015.

[113] Harold Lim, Herodotos Herodotou, and Shivnath Babu. Stubby: A transformation-
based optimizer for mapreduce workflows. In Proc. VLDB, 2012.

[114] Seung-Hwan Lim, Hyogi Sim, Raghul Gunasekaran, and Sudharshan S Vazhkudai.
Scientific user behavior and data-sharing trends in a petascale file system. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, page 46. ACM, 2017.

[115] Linux. inotify-tools. https://github.com/rvoicilas/inotify-tools/, 2010. Ac-
cessed: Sept, 2018.

[116] Linux. fanotify. http://man7.org/linux/man-pages/man7/fanotify.7.html, 2017.
Accessed: Sept, 2018.

[117] Michael Littley, Ali Anwar, Hannan Fayyaz, Zeshan Fayyaz, Vasily Tarasov, Lukas
Rupprecht, Dimitrios Skourtis, Mohamed Mohamed, Heiko Ludwig, Yue Cheng, and
Ali R Butt. Bolt: Towards a scalable docker registry via hyperconvergence. In IEEE
International Conference on Cloud Computing, 2019.

[118] Jinjun Liu, Dan Feng, Yu Hua, Bin Peng, and Zhenhua Nie. Using provenance to effi-
ciently improve metadata searching performance in storage systems. Future Generation
Computer Systems, 50:99–110, 2015.

[119] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sudharshan S Vazhkudai. Server-
side log data analytics for i/o workload characterization and coordination on large
shared storage systems. In SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 819–829. IEEE,
2016.

[120] LLNL. Hacc i/o benchmark summary, 2017. URL https://asc.llnl.gov/CORAL-

benchmarks/Summaries/HACC_IO_Summary_v1.0.pdf.

[121] LLNL. Ior benchmark, 2017. https://asc.llnl.gov/sequoia/ benchmark-
s/IOR summary v1.0.pdf.

https://github.com/rvoicilas/inotify-tools/
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACC_IO_Summary_v1.0.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/HACC_IO_Summary_v1.0.pdf

BIBLIOGRAPHY 135

[122] Glenn K Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip Carns, and
Nicholas J Wright. A year in the life of a parallel file system. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage,
and Analysis, page 74. IEEE Press, 2018.

[123] Glenn K Lockwood, Nicholas J Wright, Shane Snyder, Philip Carns, George Brown,
and Kevin Harms. Tokio on clusterstor: connecting standard tools to enable holistic
i/o performance analysis. In 2018 Cray User Group, 2018.

[124] Robert Love. Kernel korner: Intro to inotify. Linux Journal, 2005(139):8, 2005.

[125] Lustre. Lustre - distributed name space, . URL http://wiki.lustre.org/Lustre_

Metadata_Service_(MDS). Accessed: July 15 2020.

[126] Lustre. Lustre jobstats, . URL http://doc.lustre.org/lustre_manual.xhtml#

dbdoclet.jobstats. Accessed: April 1 2019.

[127] Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. A Multi-Level Ap-
proach for Understanding I/O Activity in HPC Applications. In Proc. CLUSTER.
IEEE, September 2013. doi: 10.1109/CLUSTER.2013.6702690.

[128] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. A multiplatform study of i/o
behavior on petascale supercomputers. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed Computing, pages 33–44. ACM,
2015.

[129] J. F. Martinez and E. Ipek. Dynamic multicore resource management: A machine
learning approach. IEEE Micro, 29(5):8–17, 2009.

[130] Ryan McKenna, Stephen Herbein, Adam Moody, Todd Gamblin, and Michela Taufer.
Machine learning predictions of runtime and io traffic on high-end clusters. In 2016
IEEE International Conference on Cluster Computing (CLUSTER), pages 255–258.
IEEE, 2016.

[131] Microsoft. FileSystemWatcher. https://docs.microsoft.com/en-us/dotnet/

api/system.io.filesystemwatcher?redirectedfrom=MSDN&view=netframework-

4.7.2, 2010. Accessed: Sept, 2018.

[132] Rich Miller. Google using machine learning to boost data center efficiency — data cen-
ter knowledge, 2014. URL http://www.datacenterknowledge.com/archives/2014/

05/28/google-using-machine-learning-boost-data-center-efficiency/2/.

[133] Ross Miller, Jason Hill, David A Dillow, Raghul Gunasekaran, Galen M Shipman,
and Don Maxwell. Monitoring tools for large scale systems. In Cray User Group
Conference, 2010.

http://wiki.lustre.org/Lustre_Metadata_Service_(MDS)
http://wiki.lustre.org/Lustre_Metadata_Service_(MDS)
http://doc.lustre.org/lustre_manual.xhtml#dbdoclet.jobstats
http://doc.lustre.org/lustre_manual.xhtml#dbdoclet.jobstats
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher?redirectedfrom=MSDN&view=netframework-4.7.2
http://www.datacenterknowledge.com/archives/2014/05/28/google-using-machine-learning-boost-data-center-efficiency/2/
http://www.datacenterknowledge.com/archives/2014/05/28/google-using-machine-learning-boost-data-center-efficiency/2/

136 BIBLIOGRAPHY

[134] Rick Mohr, Michael Brim, Sarp Oral, and Andreas Dilger. Evaluating progressive file
layouts for lustre. In Cray User Group Conference (CUG 2016), 2016.

[135] Esteban Molina-Estolano, Carlos Maltzahn, and Scott Brandt. Dynamic load balancing
in ceph. 2008.

[136] Rimma Nehme and Nicolas Bruno. Automated partitioning design in parallel database
systems. In Proc. ACM SIGMOD, 2011.

[137] Sarah Neuwirth. Accelerating Network Communication and I/O in Scientific High
Performance Computing Environments. PhD thesis, Heidelberg University, Germany,
December 2018.

[138] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Bruening. Automatic and trans-
parent resource contention mitigation for improving large-scale parallel file system
performance. In Proc. ICPADS. IEEE, 2017.

[139] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, C Sclatter Ellis, and Michael L
Best. File-access characteristics of parallel scientific workloads. IEEE Transactions on
Parallel and Distributed Systems, 7(10):1075–1089, 1996.

[140] NS-3. Network simulator, 2017. http://code.nsnam.org/.

[141] Michael A Olson et al. The design and implementation of the inversion file system. In
USENIX Winter, pages 205–218, 1993.

[142] OpenSFS and EOFS. Lustre file system. http://lustre.org/. Accessed: November
2 2019.

[143] Sarp Oral, Feiyi Wang, David Dillow, Galen M Shipman, Ross Miller, and Oleg Drokin.
Efficient object storage journaling in a distributed parallel file system. In FAST, vol-
ume 10, pages 1–12, 2010.

[144] Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang, Matt Ezell,
Ross Miller, Douglas Fuller, Raghul Gunasekaran, Youngjae Kim, et al. Best practices
and lessons learned from deploying and operating large-scale data-centric parallel file
systems. In SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 217–228. IEEE, 2014.

[145] Sarp Oral, Sudharshan S Vazhkudai, Feiyi Wang, Christopher Zimmer, Christopher
Brumgard, Jesse Hanley, George Markomanolis, Ross Miller, Dustin Leverman, Scott
Atchley, et al. End-to-end i/o portfolio for the summit supercomputing ecosystem. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–14, 2019.

http://lustre.org/

BIBLIOGRAPHY 137

[146] Aleatha Parker-Wood, Christina Strong, Ethan L Miller, and Darrell DE Long. Se-
curity aware partitioning for efficient file system search. In 2010 IEEE 26th MSST,
pages 1–14. IEEE, 2010.

[147] Barbara K Pasquale and George C Polyzos. A static analysis of i/o characteristics of
scientific applications in a production workload. In Supercomputing’93: Proceedings of
the 1993 ACM/IEEE Conference on Supercomputing, pages 388–397. IEEE, 1993.

[148] Tirthak Patel, Suren Byna, Glenn K Lockwood, Nicholas J Wright, Philip Carns,
Robert Ross, and Devesh Tiwari. Uncovering access, reuse, and sharing characteristics
of i/o-intensive files on large-scale production {HPC} systems. In 18th {USENIX}
Conference on File and Storage Technologies ({FAST} 20), pages 91–101, 2020.

[149] Swapnil Patil and Garth A Gibson. Scale and concurrency of giga+: File system
directories with millions of files. In FAST, pages 13–13, 2011.

[150] Arnab K Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R Butt, Michael J Brim,
and Sangeetha B Srinivasa. I/O load balancing for big data HPC applications. In
International Conference on Big Data, pages 233–242. IEEE, 2017.

[151] Arnab K Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R Butt, Michael J Brim, and
Sangeetha B Srinivasa. I/o load balancing for big data hpc applications. In 2017 IEEE
International Conference on Big Data (Big Data), pages 233–242. IEEE, 2017.

[152] Arnab K Paul, Steven Tuecke, Ryan Chard, Ali R Butt, Kyle Chard, and Ian Foster.
Toward scalable monitoring on large-scale storage for software defined cyberinfrastruc-
ture. In Proceedings of the 2nd Joint International Workshop on Parallel Data Storage
& Data Intensive Scalable Computing Systems, pages 49–54, 2017.

[153] Arnab K Paul, Ryan Chard, Kyle Chard, Steven Tuecke, Ali R Butt, and Ian Foster.
Fsmonitor: Scalable file system monitoring for arbitrary storage systems. In 2019 IEEE
International Conference on Cluster Computing (CLUSTER), pages 1–11. IEEE, 2019.

[154] Arnab K Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and
Ali R Butt. Understanding hpc application i/o behavior using system level statistics,
2019.

[155] Arnab K Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and
Ali R Butt. Improving i/o performance of hpc applications using intra-job scheduling.
In 2019 Work-In-Progress Proceedings of the Joint International Workshop on Parallel
Data Storage & Data Intensive Scalable Computing Systems, pages 1 – 1, 2019.

[156] Arnab K Paul, Ryan Chard, Kyle Chard, Ali R Butt, and Ian Foster. Storm: File
system monitoring for large scale storage systems. In In Submission, pages 1–12. IEEE,
2020.

138 BIBLIOGRAPHY

[157] Arnab K Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and
Ali R Butt. Understanding hpc application i/o behavior using system level statistics.
In In Submission, pages 1–10, 2020.

[158] Arnab K Paul, Bharti Wadhwa, Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ali R
Butt. Resource contention aware load balancing for large-scale parallel file systems. In
In Submission, pages 1–12, 2020.

[159] Arnab K Paul, Brian Wang, Nathan Rutman, Cory Spitz, and Ali R Butt. Efficient
metadata indexing for hpc storage systems. In 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages 162–171.
IEEE, 2020.

[160] Arnab Kumar Paul. Dynamic virtual machine placement in cloud computing. PhD
thesis, 2015.

[161] Arnab Kumar Paul and Bibhudatta Sahoo. Dynamic virtual machine placement in
cloud computing. In Resource Management and Efficiency in Cloud Computing Envi-
ronments, pages 136–167. IGI Global, 2017.

[162] Arnab Kumar Paul, Sourav Kanti Addya, Bibhudatta Sahoo, and Ashok Kumar Turuk.
Application of greedy algorithms to virtual machine distribution across data centers.
In 2014 Annual IEEE India Conference (INDICON), pages 1–6. IEEE, 2014.

[163] Arnab Kumar Paul, Wenjie Zhuang, Luna Xu, Min Li, M Mustafa Rafique, and Ali R
Butt. Chopper: Optimizing data partitioning for in-memory data analytics frame-
works. In 2016 IEEE International Conference on Cluster Computing (CLUSTER),
pages 110–119. IEEE, 2016.

[164] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems. In Proc. ACM SIGMOD, 2012.

[165] Python. Watchdog. https://pypi.org/project/watchdog/, 2010. Accessed: Sept,
2018.

[166] Yingjin Qian, Eric Barton, Tom Wang, Nirant Puntambekar, and Andreas Dilger. A
novel network request scheduler for a large scale storage system. Computer Science
- Research and Development, 23(3):143–148, 2009. ISSN 1865-2042. doi: 10.1007/
s00450-009-0073-9. URL http://dx.doi.org/10.1007/s00450-009-0073-9.

[167] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. Sword: Scalable workload-
aware data placement for transactional workloads. In Proc. ACM International Con-
ference on Extending Database Technology, 2013.

[168] Dino Quintero, Luis Bolinches, Puneet Chaudhary, Willard Davis, Steve Duersch,
Carlos Henrique Fachim, Andrei Socoliuc, Olaf Weiser, et al. IBM Spectrum Scale
(formerly GPFS). IBM Redbooks, 2017.

https://pypi.org/project/watchdog/
http://dx.doi.org/10.1007/s00450-009-0073-9

BIBLIOGRAPHY 139

[169] Subhash Saini, Jason Rappleye, Johnny Chang, David Barker, Piyush Mehrotra, and
Rupak Biswas. I/o performance characterization of lustre and nasa applications on
pleiades. In 2012 19th International Conference on High Performance Computing,
pages 1–10. IEEE, 2012.

[170] Ramesh R Sarukkai. Link prediction and path analysis using markov chains. Computer
Networks, 33(1):377–386, 2000.

[171] Andrea Schaerf, Yoav Shoham, and Moshe Tennenholtz. Adaptive load balancing: A
study in multi-agent learning. Journal of Artificial Intelligence Research, 2:475–500,
1995.

[172] SchedMD. Slurm workload manager. URL https://slurm.schedmd.com/overview.

html. Accessed: April 1 2019.

[173] C. Selvakumar, G. J. Rathanam, and M. R. Sumalatha. Pdds - improving cloud
data storage security using data partitioning technique. In Proc. IEEE International
Advance Computing Conference, 2013.

[174] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a
memory cloud. In Proc. ACM SIGMOD, 2013.

[175] Galen Shipman, David Dillow, Sarp Oral, Feiyi Wang, Douglas Fuller, Jason Hill, and
Zhe Zhang. Lessons learned in deploying the world’s largest scale lustre file system. In
The 52nd Cray user group conference, 2010.

[176] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Proc. IEEE MSST, 2010.

[177] Hyogi Sim, Youngjae Kim, Sudharshan S Vazhkudai, Devesh Tiwari, Ali Anwar, Ali R
Butt, and Lavanya Ramakrishnan. Analyzethis: an analysis workflow-aware storage
system. In High Performance Computing, Networking, Storage and Analysis, 2015
SC-International Conference for, pages 1–12. IEEE, 2015.

[178] Hyogi Sim, Youngjae Kim, Sudharshan S Vazhkudai, Geoffroy R Vallée, Seung-Hwan
Lim, and Ali R Butt. Tagit: an integrated indexing and search service for file systems.
In SC, page 5. ACM, 2017.

[179] Hyogi Sim, Arnab K Paul, Eli Tilevich, Ali R Butt, and Muhammad Shahzad. Cslim:
automated extraction of iot functionalities from legacy c codebases. In Proceedings of
the 20th International Conference on Distributed Computing and Networking, pages
421–426, 2019.

[180] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. Server-storage virtu-
alization: integration and load balancing in data centers. In Proceedings of ACM/IEEE
SC, 2008.

https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html

140 BIBLIOGRAPHY

[181] Craig A.N. Soules, Kimberly Keeton, and Charles B. Morrey, III. Scan-lite: Enterprise-
wide analysis on the cheap. In EuroSys, New York, USA, 2009. ACM. ISBN 978-1-
60558-482-9. doi: 10.1145/1519065.1519079. URL http://doi.acm.org/10.1145/

1519065.1519079.

[182] Toyotaro Suzumura, Yi Zhou, Natahalie Barcardo, Guangnan Ye, Keith Houck, Ryo
Kawahara, Ali Anwar, Lucia Larise Stavarache, Daniel Klyashtorny, Heiko Ludwig,
et al. Towards federated graph learning for collaborative financial crimes detection.
arXiv preprint arXiv:1909.12946, 2019.

[183] Narate Taerat, Nichamon Naksinehaboon, Clayton Chandler, James Elliott, Chokchai
Leangsuksun, George Ostrouchov, Stephen L Scott, and Christian Engelmann. Blue
gene/l log analysis and time to interrupt estimation. In 2009 International Conference
on Availability, Reliability and Security, pages 173–180. IEEE, 2009.

[184] Douglas A Talbert and Doug Fisher. An empirical analysis of techniques for construct-
ing and searching k-dimensional trees. In Proceedings of the sixth ACM SIGKDD, pages
26–33. ACM, 2000.

[185] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. Someta: Scalable
object-centric metadata management for high performance computing. In CLUSTER,
pages 359–369. IEEE, 2017.

[186] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui
Zhang, and Yi Zhou. A hybrid approach to privacy-preserving federated learning. In
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pages
1–11, 2019.

[187] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vo-
jnovic. Fennel: Streaming graph partitioning for massive scale graphs. In Proc. ACM
International Conference on Web Search and Data Mining, 2014.

[188] Alan Tucker. A note on convergence of the ford-fulkerson flow algorithm. Mathematics
of Operations Research, 2(2):143–144, 1977.

[189] A. Turcu, R. Palmieri, B. Ravindran, and S. Hirve. Automated data partitioning for
highly scalable and strongly consistent transactions. IEEE Transactions on Parallel
and Distributed Systems, 27(1):106–118, 2016. ISSN 1045-9219.

[190] UMass. Umass trace repository, 2017. http://traces.cs.umass.edu/ in-
dex.php/Storage/Storage.

[191] Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang Chen, and Beng Chin Ooi.
Logbase: A scalable log-structured database system in the cloud. In Proc. ACM VLDB,
2012.

http://doi.acm.org/10.1145/1519065.1519079
http://doi.acm.org/10.1145/1519065.1519079

BIBLIOGRAPHY 141

[192] B. Wadhwa and A. Verma. Carbon efficient vm placement and migration technique
for green federated cloud datacenters. In 2014 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 2297–2302, 2014.

[193] B. Wadhwa and A. Verma. Energy saving approaches for green cloud computing: A re-
view. In 2014 Recent Advances in Engineering and Computational Sciences (RAECS),
pages 1–6, 2014.

[194] B. Wadhwa and A. Verma. Energy and carbon efficient vm placement and migration
technique for green cloud datacenters. In 2014 Seventh International Conference on
Contemporary Computing (IC3), pages 189–193, 2014.

[195] B. Wadhwa, S. Byna, and A. R. Butt. Toward transparent data management in multi-
layer storage hierarchy of hpc systems. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 211–217, 2018.

[196] Bharti Wadhwa, Arnab K Paul, Sarah Neuwirth, Feiyi Wang, Sarp Oral, Ali R Butt,
Jon Bernard, and Kirk W Cameron. iez: Resource contention aware load balancing for
large-scale parallel file systems. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 610–620. IEEE, 2019.

[197] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. Infinicache: Exploiting ephemeral
serverless functions to build a cost-effective memory cache. In 18th USENIX Conference
on File and Storage Technologies (FAST 20), pages 267–281, 2020.

[198] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, and Sudharshan S Vazhkudai.
Improving large-scale storage system performance via topology-aware and balanced
data placement. In 2014 20th IEEE International Conference on Parallel and Dis-
tributed Systems (ICPADS), pages 656–663. IEEE, 2014.

[199] Feng Wang, Qin Xin, Bo Hong, Scott A Brandt, Ethan L Miller, Darrell DE Long,
and Tyce T McLarty. File system workload analysis for large scale scientific computing
applications. In Proceedings of the 21st IEEE/12th NASA Goddard Conference on Mass
Storage Systems and Technologies, pages 139–152, 2004.

[200] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas Wright, and Suren
Byna. Iominer: Large-scale analytics framework for gaining knowledge from i/o logs.
In 2018 IEEE International Conference on Cluster Computing (CLUSTER), pages
466–476. IEEE, 2018.

[201] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceedings of the 7th
symposium on Operating systems design and implementation, pages 307–320. USENIX
Association, 2006.

142 BIBLIOGRAPHY

[202] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Crush:
Controlled, scalable, decentralized placement of replicated data. In Proceedings of
ACM/IEEE SC, 2006.

[203] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. Navigating big
data with high-throughput, energy-efficient data partitioning. In Proc. ACM ISCA,
2013.

[204] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimization for
massively parallel data processing. In Proc. ACM SoCC, 2011.

[205] MR Wyatt, S Herbein, T Gamblin, A Moody, A Dong, and M Taufer. From job scripts
to resource predictions: Paving the path to next-generation hpc schedulers. Technical
report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
2017.

[206] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker, and
Ion Stoica. Shark: Sql and rich analytics at scale. In Proc. ACM SIGMOD, 2013.

[207] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. Hybridalpha:
An efficient approach for privacy-preserving federated learning. In Proceedings of the
12th ACM Workshop on Artificial Intelligence and Security, pages 13–23, 2019.

[208] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu Zhang, Xiupeng Zhu, Nosayba
El-Sayed, Haidong Lan, Yibo Yang, Jidong Zhai, et al. End-to-end i/o monitoring on a
leading supercomputer. In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 379–394, 2019.

[209] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan. A framework
for partitioning and execution of data stream applications in mobile cloud computing.
ACM SIGMETRICS Perform. Eval. Rev., 40(4):23–32, 2013. ISSN 0163-5999.

[210] Xin Yang, Qi Liu, BC Yin, Qiang Zhang, DS Zhou, and XP Wei. k-d tree construction
designed for motion blur. In Proceedings of the Eurographics Symposium on Render-
ing: Experimental Ideas & Implementations, pages 113–119. Eurographics Association,
2017.

[211] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proc. USENIX HotCloud,
2010. URL http://dl.acm.org/citation.cfm?id=1863103.1863113.

[212] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proc.
USENIX NSDI, 2012.

http://dl.acm.org/citation.cfm?id=1863103.1863113

BIBLIOGRAPHY 143

[213] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, Dries Kimpe,
Philip Carns, Robert Ross, and Ioan Raicu. Fusionfs: Toward supporting data-
intensive scientific applications on extreme-scale high-performance computing systems.
In 2014 IEEE International Conference on Big Data (Big Data), pages 61–70. IEEE,
2014.

[214] Dongfang Zhao, Kan Qiao, Zhou Zhou, Tonglin Li, Zhihan Lu, and Xiaohua Xu.
Toward efficient and flexible metadata indexing of big data systems. IEEE Transactions
on Big Data, 3(1):107–117, 2017.

[215] N. Zhao, J. Wan, J. Wang, and C. Xie. Greencht: A power-proportional replication
scheme for consistent hashing based key value storage systems. In 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST), pages 1–6, 2015.

[216] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis, A. S. Warke,
M. Mohamed, and A. R. Butt. Large-scale analysis of the docker hub dataset. In 2019
IEEE International Conference on Cluster Computing (CLUSTER), pages 1–10, 2019.

[217] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Skourtis, A. Warke, M. Mohamed,
and A. Butt. Slimmer: Weight loss secrets for docker registries. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), pages 517–519, 2019.

[218] Nan-nan Zhao, Ji-guang Wan, Jun Wang, and Chang-sheng Xie. A reliable power
management scheme for consistent hashing based distributed key value storage systems.
Frontiers of Information Technology and Electronic Engineering, 17:994–1007, 10 2016.
doi: 10.1631/FITEE.1601162.

[219] Nannan Zhao, Ali Anwar, Yue Cheng, Mohammed Salman, Daping Li, Jiguang Wan,
Changsheng Xie, Xubin He, Feiyi Wang, and Ali Raza Butt. Chameleon: An adaptive
wear balancer for flash clusters. 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1163–1172, 2018.

[220] Nannan Zhao, Ali Anware, Yue Cheng, Mohammed Salman, Daping Li, Jiguang Wan,
Changsheng Xie, Xubin He, Feiyi Wang, and Ali Butt. Chameleon: An adaptive
wear balancer for flash clusters. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1163–1172. IEEE, 2018.

[221] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. Large-scale analysis of
the docker hub dataset. In 2019 IEEE International Conference on Cluster Computing
(CLUSTER), pages 1–10. IEEE, 2019.

[222] Nannan Zhao, Vasily Tarasov, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Amit
Warke, Mohamed Mohamed, and Ali Butt. Slimmer: Weight loss secrets for docker reg-
istries. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD),
pages 517–519. IEEE, 2019.

144 BIBLIOGRAPHY

[223] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren Chen, Vasily Tarasov, Dim-
itrios Skourtis, Lukas Rupprecht, Ali Anwar, and Ali R. Butt. Duphunter: Flexi-
ble high-performance deduplication for docker registries. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 769–783. USENIX Association, July
2020. ISBN 978-1-939133-14-4. URL https://www.usenix.org/conference/atc20/

presentation/zhao.

[224] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren Chen, Vasily Tarasov, Dim-
itrios Skourtis, Lukas Rupprecht, Ali Anwar, and Ali R Butt. Duphunter: Flexible
high-performance deduplication for docker registries. To appear in USENIX Annual
Technical Conference (ATC 20), 2020.

[225] Tiezhu Zhao, Verdi March, Shoubin Dong, and Simon See. Evaluation of a performance
model of lustre file system. In 2010 Fifth Annual ChinaGrid Conference, pages 191–
196. IEEE, 2010.

[226] Z. Zhong, V. Rychkov, and A. Lastovetsky. Data partitioning on multicore and multi-
gpu platforms using functional performance models. IEEE Transactions on Computers,
64(9):2506–2518, 2015.

[227] Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan Shand, David Roazen, and Ja-
son Cong. Doppio: I/o-aware performance analysis, modeling and optimization for
in-memory computing framework. In 2018 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pages 22–32. IEEE, 2018.

[228] Sergi Àlvarez. Fsmon. https://github.com/nowsecure/fsmon, 2016. Accessed: Sept,
2018.

https://www.usenix.org/conference/atc20/presentation/zhao
https://www.usenix.org/conference/atc20/presentation/zhao
https://github.com/nowsecure/fsmon

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Application-Attuned HPC Storage Systems
	Understanding HPC Application I/O Behavior Using System Level Statistics
	Optimizing Data Partitioning for In-Memory Data Analytics Frameworks
	File System Monitoring for Large Scale Storage Systems
	Efficient Metadata Indexing for HPC Storage Systems
	I/O Load Balancing for Big Data HPC Applications

	Research Contributions
	Dissertation Organization

	Background
	Analysis of I/O Behavior of HPC Workloads
	Optimization in Big Data Processing Frameworks
	Monitoring of Large Scale Storage Systems
	Metadata Indexing in HPC Storage Systems
	Load Management in HPC Storage Systems

	Understanding HPC Application I/O Behavior Using System Level Statistics
	Introduction
	Background
	Lustre Parallel File System
	Clusters

	Data Collection
	Aggregate Job Statistics
	Time-Series Job Statistics

	Analysis
	Aggregate Job Statistics
	Time-Series Job Statistics

	Discussion
	Lessons for HPC admininistrators
	Lessons for HPC users

	Chapter Summary

	Optimizing Data Partitioning for In-Memory Data Analytics Frameworks
	Introduction
	Background and Motivation
	Spark Data Partitioning
	Workload Study

	System Design
	Enable Auto-Partitioning
	Determine Stage-Level Partition Scheme
	Globally-Optimized Partition Scheme

	Evaluation
	Overall Performance of Chopper
	Timing Breakdown of Execution Stages
	Impact on Shuffle Stages
	Impact on System Utilization

	Chapter Summary

	File System Monitoring for Large Scale Storage Systems
	Introduction
	Background
	Parallel File System
	Object Storage
	Monitoring Storage System Events
	Prior Work

	FSMonitor System Design
	Logical View of FSMonitor
	Storage System View of FSMonitor

	Evaluation
	Experimental Setup
	Experiment Workloads
	Evaluating FSMonitor Using Synthetic Benchmark
	Evaluating FSMonitor Using Metadata Benchmarks
	Evaluating FSMonitor Using Data Benchmarks

	An Illustrative Application Use Case
	Chapter Summary

	Efficient Metadata Indexing for HPC Storage Systems
	Introduction
	Background & Motivation
	Partitioning Techniques
	Metadata Attributes
	HPC Storage System
	Collecting Metadata Changes

	System Design
	Indexer
	Re-Indexer
	Metadata Query Interface

	Evaluation
	Experimental Setup
	Workloads
	Comparison of System Calls
	Evaluation of Indexer
	Evaluation of Metadata Query Interface
	Evaluation of Re-Indexer

	Chapter Summary

	I/O Load Balancing for Big Data HPC Applications
	Introduction
	Background and Motivation
	Progressive File Layout
	I/O Performance Statistics
	The Need for Load Balancing

	System Design
	Parallel File Access Modes for Varying Striping Layouts
	Client-Side Components
	Server-Side Components

	Evaluation
	Methodology
	Comparison of Load Balancing Approaches
	Scalability Study

	Chapter Summary

	Conclusion and Future Work
	Summary
	Future Directions
	ML for I/O and I/O for ML
	Edge Computing and Federated Learning
	Containers in HPC

	Bibliography

