
CHOPPER: Optimizing Data Partitioning for

In-Memory Data Analytics Frameworks

Arnab Kumar Paul†, Wenjie Zhuang†, Luna Xu†, Min Li‡, M. Mustafa Rafique�, Ali R. Butt†

†Virginia Tech, ‡IBM Almaden Research, �IBM Research - Ireland

{akpaul, kaito, xuluna, butta}@cs.vt.edu, minli@us.ibm.com, mustafa.rafique@ie.ibm.com

Abstract—The performance of in-memory based data analytic
frameworks such as Spark is significantly affected by how
data is partitioned. This is because the partitioning effectively
determines task granularity and parallelism. Moreover, different
phases of a workload execution can have different optimal
partitions. However, in the current implementations, the tuning
knobs controlling the partitioning are either configured statically
or involve a cumbersome programmatic process for affecting
changes at runtime.

In this paper, we propose CHOPPER, a system for automat-
ically determining the optimal number of partitions for each
phase of a workload and dynamically changing the partition
scheme during workload execution. CHOPPER monitors the
task execution and DAG scheduling information to determine
the optimal level of parallelism. CHOPPER repartitions data as
needed to ensure efficient task granularity, avoids data skew,
and reduces shuffle traffic. Thus, CHOPPER allows users to write
applications without having to hand-tune for optimal parallelism.
Experimental results show that CHOPPER effectively improves
workload performance by up to 35.2% compared to standard
Spark setup.

I. INTRODUCTION

Large scale in-memory data analytic platforms, such as

Spark [30], [31], are being increasingly adopted by both

academia and industry for processing data for a myriad

of applications and data sources. These platforms are able

to greatly reduce the amount of disk I/Os by caching the

intermediate application data in-memory, and leverage more

powerful and flexible direct acyclic graphs (DAG) based task

scheduling. Thus, in-memory platforms outperform widely-

used MapReduce [4]. The main advantage of a DAG-based

programming paradigm is the flexibility it offers to the users in

expressing their application requirements. However, the down-

side is that complicated task scheduling makes identifying

application bottlenecks and performance tuning increasingly

challenging.

There is a plethora of application-specific parameters that

impact runtime performance in Spark, such as tasks paral-

lelism, data compression and executor resource configuration.

In typical data processing systems, the input (or interme-

diate) data is divided into logical subsets, called partitions.

Specifically, in Spark, a partition can not be divided between

multiple compute nodes for execution, and each compute node

in the cluster processes one or more partitions. Moreover,

a user can configure the number of partitions and how the

data should be partitioned (i.e., hash or range partitioning

schemes) for each Spark job. Suboptimal task partitioning

or selecting a non-optimal partition scheme can significantly

increase workload execution time. For instance, if a partition

strategy launches too many tasks within a computation phase,

this would lead to CPU and memory resource contention,

and thus lose performance. Conversely, if too few tasks are

launched, the system would have low resource utilization and

would again result in reduced performance.

Moreover, inferior partitioning can lead to serious data skew

across tasks, which would eventually result in some tasks

taking significantly longer time to complete than others. As

data processing frameworks usually employ a global barrier

between computation phases, it is critical to have all the

tasks in the same phase finish approximately at the same

time, so as to avoid stragglers that can hold back otherwise

fast-running tasks. The right scheme for data partitioning is

the key for extracting high performance from the underly-

ing hardware resources. However, finding a data partitioning

scheme that gives the best or highest performance is non-

trivial. This is because, data analytic workflows typically

involve complex algorithms, e.g., machine learning and graph

processing. Thus, the resulting task execution plan can become

extremely complicated with increasing number of multiple

computation phases. Moreover, given that each computation

phase is different, the optimal number of partitions for each

phase can also be different, further complicating the problem.

Spark provides two methods for users to control task paral-

lelism. One method is to use a workload specific configuration

parameter, default.parallelism, which serves as the default

number of tasks to use for when the number of partitions

is not specified. The second method is to use repartitioning

APIs, which allow the users to repartition the data. Spark does

not support changing of data parallelism between different

computation phases except via manual partitioning within a

user program through repartitioning APIs. This is problematic

because the optimal number of partitions can be affected by

the size of the data. Users would have to change and recompile

the program every time they process a different data set. Thus,

a clear opportunity for optimization is lost due to the rigid

partitioning approach.

In this paper, we propose CHOPPER, an auto-partitioning

system for Spark1 that automatically determines the opti-

1We use Spark as our evaluation DAG-based data processing framework
to implement and showcase the effectiveness of CHOPPER. We note that
the proposed system can be applied to other DAG-based data processing
framework, such as Dryad [10].

2016 IEEE International Conference on Cluster Computing

2168-9253/16 $31.00 © 2016 IEEE

DOI 10.1109/CLUSTER.2016.41

110

mal number of partitions for each computation phase during

workload execution. CHOPPER alleviates the need for users

to manually tune their workloads to mitigate data skewness

and suboptimal task parallelism. Our proposed dynamic data

partitioning is challenging due to several reasons. First, since

Spark does not support changing tasks parallelism parameters

for each computation phase, CHOPPER would need to design

a new interface to enable the envisioned dynamic tuning of

task parallelism. Second, the optimal data partitions differ

across different computation phases of workloads. CHOPPER

needs to understand application characteristics that affect the

task parallelism in order to select an appropriate partitioning

strategy. Finally, to adjust the number of tasks, CHOPPER may

introduce additional data repartitioning, which may incur extra

data shuffling overhead that has to be mitigated or amortized.

Thus, a careful orchestration of the parameters is needed to

ensure that CHOPPER’s benefits outweigh the costs.

To address the above challenges, CHOPPER first modifies

Spark to support dynamically changing data partitions through

an application specific configuration file. CHOPPER checks

different numbers of data partitions before scheduling the

next computation phase. Information gathering about the ap-

plication execution is achieved via several lightweight test

runs, which are then analyzed to identify task profiles, data

skewness, and optimization opportunities. CHOPPER uses this

information along with a heuristic to compute a data reparti-

tioning scheme, which minimizes the data skew, determines

the right tasks parallelism for each computation phase, while

minimizing the repartitioning overhead.

Specifically, this paper makes the following contributions.

1) We enable dynamic tuning of task parallelism for each

computation phase in DAG-based in-memory analytics

platforms such as Spark.

2) We design a heuristic to carefully compute suitable data

repartitioning schemes with low repartitioning overhead.

Our approach successfully identifies the data skewness

and optimization opportunities and adjusts task paral-

lelism automatically to yield higher performance com-

pared to the default static approach.

3) We implement CHOPPER on top of Spark and evaluate the

system to demonstrate its effectiveness. Our experiments

demonstrate that CHOPPER can significantly outperform

vanilla Spark by up to 35.2% for the studied workloads.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss current data partitioning

methodologies in Spark. Next, we present the motivation

for our work by studying the performance impact of differ-

ent number of data partitions on a representative workload,

KMeans [7].

A. Spark Data Partitioning

In Spark, data is managed as an easy-to-use memory ab-

straction called resilient distributed datasets (RDDs) [30]. To

process large data in parallel, Spark partitions an RDD into

a collection of immutable partitions (blocks) across a set of

Fig. 1. Overview of Spark DAGScheduler.

machines. Each machine retains several blocks of an RDD.

Spark tasks, with one-to-one relationship with the partitions,

are launched on the machine that stores the partitions. Compu-

tation is done in the form of RDD actions and transformations,

which can be used to capture the lineage of a dataset as a

DAG of RDDs, and help in the recreation of an RDD in

case of a failure. Such DAGs of RDDs are maintained in a

specialized component, DAGScheduler, which schedules the

tasks for execution.

Fig. 1 shows an overview of the Spark DAGScheduler. The

input to DAGScheduler are called jobs (shown as ActiveJob

in the figure). Jobs are submitted to the scheduler using a

submitJob method. Every job requires computation of multiple

stages to produce the final result. Stages are created by shuffle

boundaries in the dependency graph, and constitute a set of

tasks where each task is a single unit of work executed on

a single machine. The narrow dependencies, e.g., map and

filter, allow operations to be executed in parallel and are

combined in a single stage. The wide dependencies, e.g.,

reduceByKey, require results to be combined from multi-

ple tasks and cannot be confined to a single stage. Thus,

there are two types of stages: ShuffleMapStage (shown in

Fig. 1 as ShuffleMapStage1, ShuffleMapStage2, ...,

ShuffleMapStagen), which writes map output files for a

shuffle operation, and ResultStage, i.e., the final stage in a job.

ShuffleMapStage and ResultStage are created in the scheduler

using newShuffleMapStage and newResultStage methods, re-

spectively.

In Spark, tasks are generated based on the number of

partitions of an input RDD at a particular stage. The same

function is executed on every partition of an RDD by each

task. In Fig. 1, ShuffleMapStage2 is expanded to show the

operations involved in a particular stage. Different operations

in a stage form different RDDs (RDD1, RDD2, ... , RDDr).

Each RDD consists of a number of tasks that can be operated

in parallel. In the figure, Pαβ represents partitionα of RDDβ .

There are m partitions for an RDD. Each RDD in a stage

consists of a narrow dependency on the previous RDD, which

enables parallel execution of multiple tasks. Thus, the number

of partitions at each stage determins the level of parallelism.

Currently, Spark automatically determines the number of

partitions based on the dataset size and the cluster setups.

However, the number of partitions can also be configured

111

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Stages

Partitions=100
Partitions=200
Partitions=300

Partitions=400
Partitions=500

Fig. 2. Execution time per stage under different number of partitions.

manually using spark.default.parallelism parameter.

In order to partition the data, Spark provides two data parti-

tioning schemes, namely hash partitioner and range partitioner.

Hash partitioner divides RDD based on the hash values of

keys in each record. Data with the same hash keys are

assigned to the same partition. Conversely, range partitioner

divides a dataset into approximately equal-sized partitions,

each of which contains data with keys within a specific range.

Range partitioner provides better workload balance, while hash

partitioner ensures that the related records are in the same

partition. Hash partitioner is the default partitioner, however,

users can opt to use their own partitioner by extending the

Partitioner interface.

Although Spark provides mechanisms to automatically de-

termine the number of partitions for a given RDD, it lacks

application related knowledge to determine the best parallelism

for a specific job. Moreover, the default hash partitioner is

prone to creating workload imbalance for some input data.

Spark provides the flexibility to tailor the configurations for

workloads, however, it is not easy for users to determine the

best configurations for each stage of a workload, especially

when workloads may contain hundreds of stages.

B. Workload Study

To show the impact of data partitioning on application

performance, we conduct a study using KMeans workload

from SparkBench [14] and the latest release of Spark (version

1.6.1), with Hadoop (version 2.6) providing the HDFS [22]

storage layer. Our experiments execute on a 6-node heteroge-

neous cluster. Three nodes (A, B, C) have 32 cores, 2.0 GHz

AMD processors, 64 GB memory, and are connected through

a 10 Gbps Ethernet interconnect. Two nodes (D, E) have 8

cores, 2.3 GHz Intel processors, 48 GB memory. The the

remaining node (F) has 8 cores, 2.5 GHz Intel processor,

and 64 GB memory. Nodes D, E and F are connected via

a 1 Gbps Ethernet interconnect. Node F is configured to be

the master node, while nodes A to E are worker nodes for

both HDFS and Spark. Every worker node has one executor

with 40 GB memory, and the remaining memory can be used

for the OS buffer and HDFS data node operations. While our

cluster hardware is heterogeneous, we configure each executor

with the same amount of resources, essentially providing same

resources to each component to better match with Spark’s

needs, and alleviating the performance impact due to the

 0

 50

 100

 150

 200

 250

 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Number of Partitions

Stage 0

Fig. 3. Execution time of stage 0 under different partition numbers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 12 13 14 15 16 17

S
hu

ffl
e

D
at

a
(K

B
)

Stage ID

Partitions=100
Partitions=200
Partitions=300

Partitions=400
Partitions=500

Fig. 4. Shuffle data per stage under different partition numbers.

heterogeneity of the hardware. Note that, given the increasing

heterogeneity in modern clusters, we do take the heterogeneity

of cluster resource into account when designing CHOPPER.

We repeated each experiment 3 times, and report the average

results in the following.

First, we study the performance impact of different number

of partitions. For this test, we use KMeans workload with

7.3 GB input data size. KMeans has 20 stages in total, and we

change the number of partitions from 100 to 500 and record

the execution time for each stage. Fig. 2 shows the results.

For every stage, the number of partitions that yields minimum

execution time varies. This shows that different stages have

different characteristics and that the execution time for each

stage can vary even under the same configuration. To further

investigate the impact on performance, we study stage-0 in

more detail. As shown in Fig. 3, the execution time of a stage

changes with the number of partitions, and we see the worst

performance when the number of partitions is set to 100. From

this study, we observed that the number of partitions has an

impact on the overall performance of a workload. Furthermore,

different stages inside a workload can have different optimal

number of partitions. In this example, specifying 100 partitions

may be an optimal configuration for overall execution (Fig. 2),

but clearly it is not optimal for stage-0 (Fig. 3).

To better understand the above observed performance im-

pact, we investigate the amount of shuffle data produced at

each stage with different number of partitions—since shuffle

has a big impact on workload performance. For this test, we

record the maximum of shuffle read or write data as repre-

sentative of shuffle data per stage. For KMeans, only stages

12-17 involve data shuffle. As shown in Fig. 4, any increase

in the number of partitions also increases the shuffle data

112

Fig. 5. System architecture of CHOPPER.

at each stage. A shuffle stage usually involves repartitioning

RDD data. For an equivalent execution time, if repartitioning

is not involved, then the amount of shuffle data increases

from 434.83 KB for 200 partitions to 1081.6 KB for 500

partitions for stage-17, compared to 217.33 KB of shuffle

data when repartitioning is done. Also, when compared to a

large number of partitions, e.g., 2000, there is a significant

increase in the execution time as well as increase in the amount

of shuffle data. For 2000 partitions, the execution time is

4.53 minutes and the amount of shuffle data for stage-17 is

4300.8 KB. We observe 38.8% improvement in execution

time from repartitioning for similar amount of shuffle data.

Also there is 46.1% improvement in execution time, and

94.9% reduction in the amount of shuffle data per stage when

compared to large (i.e., 2000) number of partitions.

These experiments show that the number of partitions is

an important configuration parameter in Spark and can help

improve the performance of a workload. The optimal number

of partitions not only varies with workload characteristics,

but is also different among different stages of a workload.

We leverage these findings in designing the auto-partitioning

scheme of CHOPPER.

III. SYSTEM DESIGN

In this section, we present the design of CHOPPER, and

how it achieves automatic repartitioning of RDDs for improved

performance and system efficiency.

Fig. 5 illustrates the overall architecture of CHOPPER. We

design and implement CHOPPER as an independent component

outside of Spark. As Spark is a fast evolving system, we keep

the changes to Spark for enabling our dynamic partitioning to

a minimum. This reduces code maintenance overhead while

ensuring adoption of CHOPPER for real-world use cases.

CHOPPER consists of a partition optimizer, a configuration

generator, a statistics collector, and a workload database. In

addition, CHOPPER extends the Spark’s DAGScheduler to

support dynamic partitioning configuration and employs a

Fig. 6. An example generated Spark workload configuration in CHOPPER.

co-partition-aware scheduling mechanism to reduce network

traffic whenever possible. Statistics collector communicates

with Spark to gather runtime information and statistics of

Spark applications. The collector can be easily extended to

gather additional information as needed. Workload DB stores

the observed information including the input and intermediate

data size, the number of stages, the number of tasks per stage,

and the resource utilization information. Partition optimizer

retrieves application statistics, trains models, and computes an

optimized partition scheme based on the current statistics and

the trained models for the workload to be optimized. This

information is also stored in Workload DB for future use.

Partition optimizer then generates a workload specific configu-

ration file. The extended dynamic partitioning DAGScheduler

changes the number of partitions and the partition scheme

per stage according to the generated Spark configuration

file. Finally, the co-partitioning-aware component schedules

partitions that are in the same key range on the same machine

if possible to decrease the amount of shuffle data. The partition

optimizer does not need to consider data locality because the

input of the repartitioning phase is the local output of the

previous Map phase, and the destinations of the output of the

repartitioning phase depend on the designated shuffle scheme.

Thus, existing locality is automatically preserved.

Our system allows dynamic updates to the Spark config-

uration file whenever more runtime information is obtained.

CHOPPER modifies Spark to allow applications to recognize,

read, and adopt the new partition scheme.

A. Enable Auto-Partitioning

An example application configuration file produced by

CHOPPER is shown in Fig. 6. It consists of multiple tuples

each containing a signature; the partitioner, and the number

of partitions for a particular stage. We use stage signatures

to identify stages that invoke identical transformations and

actions. This is helpful when the number of iterations within

a machine learning workload is unknown, where we can:

(a) use the same partition scheme for all the iterations; or

(b) use previously trained models to dynamically determine

the number of partitions to use if the intermediate data size

changes across iterations.

When an application is submitted to a Spark cluster, a

Spark driver program is launched in which a SparkContext is

instantiated. SparkContext then initiates our auto-partitioning

aware DAGScheduler. The scheduler checks the Spark config-

uration file before a stage is executed. If the partition scheme

is different from the current one, the scheduler changes the

scheme based on the one specified in the configuration file.

113

Each RDD has five internal properties, namely, partition list,

function to compute for every partition’s dependency list on

other RDDs, partitioner, and a list of locations to compute

every partition. CHOPPER changes the partitioner properties

to enable repartitioning across stages.

CHOPPER also supports dynamic updates to the Spark

application configuration file based on the runtime information

of current running workload. In particular, DAGScheduler

periodically checks the updated configuration file and uses

the updated partitioning scheme if available. This improves

the partitioning efficiency and overall performance.

B. Determine Stage-Level Partition Scheme

The partition optimizer is responsible for computing a

desirable partition scheme for each stage of a workload, given

the collected workload history, and current input data and

size. The optimizer not only considers the execution time and

shuffle data size of a stage but also the shuffle dependencies

between RDDs. In the following, we describe how this is

achieved for the stage-level information. The use of global

DAG information is discussed in Section III-C.

Spark provides two types of partitioners, namely range

partitioner and hash partitioner. Different data characteristics

and data distributions require different partitioners to achieve

optimal performance. Range partitioner creates data partitions

with approximately same-sized ranges. RDD tuples that have

keys in the same range are allocated to the same partition.

Spark determines the ranges through sampling of the content

of RDDs passed to it when creating a range partitioner. Thus,

the effectiveness of a range partitioner highly depends on the

data contents. A range partition scheme that distributes a RDD

evenly is likely to partition another RDD into a highly-skewed

distribution. In contrast, a hash partitioner allocates tuples

using a hash function modulo of the number of partitions.

The hash partitioner attempts to partition data evenly based

on a hash function and is less sensitive to the data contents,

and can produce even distributions. However, if the dataset has

hot keys, a partition can become skewed in terms of load, as

identical keys are mapped to the same partition. Consequently,

the appropriate choice between the range partitioner or hash

partitioner depends on the dataset characteristics and DAG

execution patterns.

To compute the stage level partition scheme, we aim to min-

imize both the stage execution time and the amount of shuffle

data. Considering stage execution time, and shuffle data that

directly affects the execution time, enables us to capture the

right task granularity. This prevents the partitions from both

growing unexpectedly large—creating resource contention—

or becoming trivially small—under-utilizing resources and

incurring extra task scheduling overhead. The approach also

implicitly alleviates task skew by filtering out inferior partition

schemes.

Equations 1, 2, 3 and 4 describe the model learned and the

objective function used to determine the optimal number of

partitions. In particular, D denotes the size of input data for

the stage, P denotes the number of partitions, texe represents

the execution time of the stage, and sshuffle is the amount

of shuffle data in the stage. t′exe and s′shuffle denote the

stage execution time and amount of shuffle data obtained

using default parallelism, respectively. Given input data size,

Equation 4 enables CHOPPER to determine the optimal number

of partitions minimizing both execution time and the amount

of shuffle data. By normalizing the execution time and the

amount of shuffle data with respect to the respective values

under default parallelism, we are able to capture both of our

constraints into the same objective function. Constants α and

β can be used to adjust the weights between the two factors.

In our implementation, we set the constants to a default value

of 0.5, making them equally important.

We model the execution time and the amount of shuffle data

based on the input data size of the current stage and the number

of partitions as shown in Equations 1 and 2. This is a coarse

grained model, since it is independent of Spark execution

details and focuses on capturing the relationship between input

size, parallelism, execution time and shuffle data. In particular,

we posit that the execution time increases with the input

data size, obeying a combination of cube, square, linear, and

sub-linear curves. The amount of shuffle data also increases

or decreases with the number of partitions according to a

combination of cube, square, linear, and sub-linear curves.

Note that our model can capture most applications observed

in the real-world use cases for Spark. However, it may not

be able to model corner cases such as those with radically

different behavior, e.g., workloads for which execution time

grows with D4. In general, we observe that such a model is

simple and computationally efficient, yet powerful enough to

capture applications with different characteristics via various

coefficients of the model. When the cluster resources and other

configuration parameters are fixed, the model fits the actual

execution time and amount of shuffle data well with varying

size of input data and number of partitions. The data points

needed to train the models are gathered by the statistics col-

lector. If the collected data points are not sufficient, CHOPPER

can initiate a few test runs by varying the sampled input data

size and the number of partitions and record the execution

time and the amount of shuffle data produced. CHOPPER also

remembers the statistics from the user workload execution in

a production environment, which can be further leveraged to

better train and model the current application behavior.

texe = a1D
3 + b1D

2 + c1D + d1D
1/2

+ e1P
3 + f1P

2 + g1P + h1P
1/2, (1)

sshuffle = a2D
3 + b2D

2 + c2D + d2D
1/2

+ e2P
3 + f2P

2 + g2P + h2P
1/2, (2)

cost = αtexe/t
′

exe + βsshuffle/s
′

shuffle (3)

min cost (4)

114

Algorithm 1: Get Stage level Partition Scheme getStagePar.

Input: workload w, stage s, input size d
Output: (partitioner, numPar, cost)
begin

rModel=getRangeParitionModel(w,s)
hModel=getHashPartitionModel(w,s)
(numRangePar,rCost)=getMinPar(rModel,d)
(numHashPar,hCost)=getMinPar(hModel,d)
if rCost < hCost then

return (RangePartitioner,numRangePar,rCost)

else
return (HashPartitioner,numHashPar,hCost)

Algorithm 2: Get workload partition scheme getWorkloadPar.

Input: workload w, DAG dag, input size D
Output: parList
begin

if dag == null then
dag = getDAG(w)

for stage s in dag do
d=getStageInput(w, s, D)
(partitoner, numPar, cost) = getStagePar(w, s, d)
parList.add(s,partitioner,numPar,cost)

return parList

CHOPPER trains two models using Equations 1 and 2

for every stage of a workload, one for range partitioning

and the other for hash partitioning. Algorithm 1 presents

how CHOPPER calculates the optimized stage level partition

scheme given workload w, stage s and input size d for

the stage. The algorithm returns the partitioner, the optimal

number of partitions used for stage s and the cost. Specifically,

CHOPPER retrieves the trained models of stages for both range

partitioning and hash partitioning from the workload database.

After this, Algorithm 1 computes the optimal numbers of

partitions with minimal cost for both range partitioning and

hash partitioning using Equation 4. Finally, CHOPPER returns

the partitioner that would incur the lowest cost along with the

number of partitions to use.

C. Globally-Optimized Partition Scheme

After we compute the stage level partition scheme, a naive

solution is to compute the optimal partition scheme for each

stage independently and generate the Spark configuration file.

This is shown in Algorithm 2. It gets the DAG information

from workload database, iterates through the DAG, computes

the desirable partition scheme for each stage, and adds to a

list of partition scheme. Lastly, the algorithm returns the list

of partition schemes, which is then used to generate the Spark

configuration file for the current workload.

Although Algorithm 2 optimizes the partition scheme per

stage, it misses the opportunities to reduce shuffle traffic

because of the dependencies between stages and RDDs. For

example, if stage-C joins the RDDs from stage-A and stage-

B, the shuffle traffic introduced by join can be completely

eliminated if the two use the same partition scheme and the

Algorithm 3: Get globally optimized partition scheme.

Input: workload w, input size D
Output: parList
begin

dag=getReGroupedDAG(w)
for node s in dag do

d=getStageInput(w, s, D)
if s isInstanceOf Stage then

(partitoner, numPar, cost) = getStagePar(w, s,
d)

else
(partitoner, numPar, cost) =
getSubGraphPar(w, s, d)

if s isFixed then
curCost = getCost(w, s, getPartitioner(w, s),
getNumPar(w, s))
optCost = cost + getRepartitionCost(w, s,
partioner, numPar)
if optCost < curCost then

s′ = s+ “repartitionstage”
parList.add(s′, partitioner, numPar,
optCost)

else
parList.add(s, partitioner, numPar, cost)

return parList

Function getSubGraphPar
Input: workload w, DAG dag, input size D
Output: paritioner, numPar, cost
parList = getWorkloadPar(w, dag, D)
min = parList(0)
for s in parList do

cost = getCost(w, dag, s.partitioner, s.numPar)
if cost < min.cost then

min = s

return (min.partitioiner,min.numPar,min.cost)

Function getCost
Input: workload w,DAG dag, partitioner, numPar
Output: cost
for stage s in dag do

if partitioner == range then
rModel = getRangePartitionModel(w, s)
cost += Equation 3

else
hModel = getHashParitionModel(w, s)
cost += Equation 3

return cost

joined partitions are allocated on the same machine. However,

this cannot be achieved using Algorithm 2. If the computed

optimal scheme of stage-A is (Range, 100) and the optimal

scheme of stage-B is (hash, 200), the shuffle data cannot be

eliminated, as the partition schemes of stage-A and stage-B
are different. Even though stage-A and stage-B are optimally

partitioned, the shuffle data of stage-C is sub-optimal. Since

join and co-group operation are two of the most commonly

used operations in Spark applications, poor partitioning will

typically introduce significant shuffle overhead. Consequently,

it is critical to optimize the join and co-group operation to

decrease the amount of shuffle data as much as possible.

115

Workload KMeans PCA SQL

Input Size (GB) 21.8 27.6 34.5

TABLE I: Workloads and input data sizes.

Another issue is that since the users are allowed to tune and

specify customized partition scheme on their own, CHOPPER

leaves the user optimization intact even when the computed

optimal scheme disagrees with the user specified partition

scheme. However, CHOPPER can choose to add an additional

partition operation if the benefit of introducing the partition

operation significantly outweighs the overhead incurred. For

instance, consider a case where stage-B blows up the number

of tasks to by a power of two from its previous stage-A (i.e.,

1002 tasks) due to the user-fixed partition scheme of stage-A.

If CHOPPER coalesces the number of tasks of stage-A from

100 to 10, it would significantly reduce the number of tasks

in stage-B from 10000 to 100.

To remedy this, CHOPPER determines the partition scheme

by globally considering the entire DAG execution. As de-

scribed in Algorithm 3, CHOPPER first groups the DAG graph

based on the stage dependencies. The grouping of DAG graph

is started from the end stages of the graph and iterated towards

the source stages. The grouping is based on the join operations

or partition dependencies. The stages with join operations are

grouped into a subgraph. The partition dependencies refer to

the cases where the number of stages is determined by the

previous stage, thus CHOPPER cannot change the partition

scheme. After the DAG of the workload is regrouped, the node

within the new DAG can either be a stage or a subgraph that

consists of multiple stages. If the node is a stage, the optimal

partition scheme is computed using Algorithm 1. Otherwise,

the node is a subgraph, where the optimal partition scheme

is computed differently. Specifically, we iterate through all

the nodes within the subgraph and get the optimal partition

scheme for each node, we then compute the cost of applying

each partition scheme to all the applicable nodes in the graph

and return the partition scheme that has the minimal cost.

Finally, after we compute the globally optimal partition

scheme, we check whether the stage partition is allowed to be

changed. If not, and the partition scheme is different, we then

check whether it is beneficial to insert a new repartitioning

phase by comparing the cost using original partitioning to the

cost of the new repartitioning phase together with the cost of

optimized partition scheme. If the benefit outweighs the cost

by a factor of γ, we choose to insert a new partition phase

into the DAG graph. We empirically set γ to 1.5 to tolerate

the model estimation error.

IV. EVALUATION

In this section, we evaluate CHOPPER and demonstrate its

effectiveness on the cluster described earlier in Section II. We

use three representative workloads from SparkBench: KMeans,

PCA, and SQL. KMeans [7] is a popular clustering algorithm

that partitions and clusters n data points into k clusters

in which each data point is assigned to the nearest center

 0

 2

 4

 6

 8

 10

 12

 14

PCA KMeans SQL

E
xe

cu
tio

n
tim

e
(m

in
)

CHOPPER
Spark

Fig. 7. Execution time of Spark and CHOPPER.

point. The computation requirement of this workload change

according to the number of clusters, the number of data points,

and the machine learning workload that exhibits different

resource utilization demand for different stages during the

process of iteratively calculating k clusters. PCA [11] is a

commonly used technique to reduce the number of features

in various data mining algorithms such as SVM [3] and

logistic regression [8]. It is both computation and network-

intensive machine learning workload that involves multiple

iterations to compute a linearly uncorrelated set of vectors

from a set of possibly correlated ones. SQL is a workload that

performs typical query operations that count, aggregate, and

join the data sets. Thus, SQL represents a common real world

scenario. SQL is compute intensive for count and aggregation

operations and shuffle intensive in the join phase. The input

data is generated by the corresponding data generator within

SparkBench. The input data size for each workload is shown

in Table I. The experiments for vanilla Spark are conducted

with the default configuration, which is set to 300 partitions

for all the workloads. We run all of our experiments three

times, and the numbers reported here are from the average of

these runs. Moreoer, we clear the OS cache between runs to

preclude the impact of such caching on observed times.

A. Overall Performance of CHOPPER

Our first test evaluates the overall performance impact

of CHOPPER. Fig. 7 illustrates the total execution time of

three workloads comparing CHOPPER against standard vanilla

Spark. The reported execution time includes the overhead

of repartitioning introduced by CHOPPER. We can see that

CHOPPER achieves overall improvement in the execution time

by 23.6%, 35.2% and 33.9% for PCA, KMeans and SQL,

respectively. This is because CHOPPER effectively detects

optimal partitioner and the number of partitions for all stages

within each workload. CHOPPER also performs global opti-

mization to further reduce network traffic by intelligently co-

partitioning dependent RDDs and inserting repartition opera-

tions when the benefits outweigh the cost. We also observe that

CHOPPER is effective for all types of workloads that exhibit

116

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E
xe

cu
tio

n
tim

e
(s

ec
)

Stage ID

Spark CHOPPER

Fig. 8. Execution time per stage breakdown of KMeans.

Chopper Spark

Execution Time (sec) 250 372

TABLE II: Execution time for stage 0 in KMeans.

different resource utilization characteristics. The repartition

method of CHOPPER implicitly reduces the potential data skew

and determines the right task granularity for each workload,

thus improving the cluster resource utilization and workload

performance. Thus, CHOPPER shows significant reduction in

the overall execution time for all the three workloads. The

model training of CHOPPER is conducted offline, and thus is

not in the critical path of workload execution. Moreover, the

overhead of repartitioning is negligible as it involves solving

a simple linear programming problem.

B. Timing Breakdown of Execution Stages

To better understand how dynamic partitioning of CHOPPER

helps to improve overall performance, in our next test, we

examine the detailed timing breakdown of individual workload

stages. Fig. 8 depicts the execution time per stage for KMeans.

We show the execution time of stage-0 separately in Table II

since the execution time of stage-0 and that of other stages

differs significantly. We see that CHOPPER reduces execution

time of each stage for KMeans compared to vanilla Spark, as

CHOPPER is able to customize partition schemes for each stage

according to associated history and runtime characteristics.

Table III shows the number of partitions used by CHOPPER for

different stages compared to vanilla Spark. Stages 12 to 17 are

iterative, and thus are assigned the same number of partitions.

We see that CHOPPER effectively detects and changes to the

correct number of partitions for this workload rather than using

a fixed (default) value throughout the execution.

C. Impact on Shuffle Stages

In our next test, we use a shuffle-intensive workload, SQL,

to study how CHOPPER reduces the shuffle traffic by automati-

cally recognizing and co-partitioning dependent RDDs. Fig. 9

shows that the shuffle data for all four stages is less under

CHOPPER compared to vanilla Spark. Stage-4 (not shown in

the figure) has the same amount of shuffle data for SQL

workload using CHOPPER or Spark (i.e., 4.7 GB). However,

as seen in Fig. 10, stage-4 takes comparatively shorter time to

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3

S
hu

ffl
e

D
at

a
(K

B
)

Stage ID

Spark CHOPPER

Fig. 9. Shuffle data per stage for SQL.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4

E
xe

cu
tio

n
tim

e
(s

ec
)

Stage ID

Spark CHOPPER

Fig. 10. Execution time per stage breakdown of SQL.

execute using CHOPPER versus Spark. This is because, stage

4 is divided into 4 sub-stages where the first two sub-stages

have a shuffle write data of 1.9 GB and 2.8 GB. CHOPPER

combines these two sub-stages for shuffle write and provides

the third sub-stage for the shuffle data to be read. This greatly

reduces the execution time for stage 4 as seen in Fig. 10.

Thus, we demonstrate that CHOPPER can effectively detect

dependent RDDs and co-partition them to reduce the shuffle

traffic and improve the overall workload performance.

D. Impact on System Utilization

In our next experiment, we investigate how CHOPPER

impacts the resource utilization of all the studied workloads.

Fig. 11, 12, 13 and 14 depict the CPU utilization, memory

utilization, total number of transmitted and received packets

per second, and the total number of read and write transactions

per second, respectively, during the execution of the workloads

under CHOPPER and vanilla Spark. The numbers show the

average of the statistics collected from the six nodes in our

cluster setup. We observe that the performance of CHOPPER

is either equivalent or in most of the cases better than the per-

formance of vanilla Spark for the studied workloads. In some

cases, CHOPPER shows improved transactions per seconds as

compared to vanilla Spark because of the high throughput and

improved system performance.

These experiments show that the performance (computed

on the basis of execution time and shuffle data) improves

under CHOPPER compared to vanilla Spark. Also, these im-

provements in CHOPPER yield comparable or better system

utilization compared to vanilla Spark.

117

StageID 0 1 2 3 4 5 6 7 8 9 10 11 12 - 17 18 19

CHOPPER 210 210 300 720 300 720 300 720 300 720 300 720 210 380 210

Spark 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

TABLE III: Repartition of stages using CHOPPER.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

C
P

U
 u

se
d

(%
)

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Fig. 11. CPU utilization.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

M
em

or
y

us
ed

 (
%

)

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Fig. 12. Memory utilization.

V. RELATED WORK

A number of recent works have focused on improving the

performance of big data processing frameworks by designing

better built-in data partitioning. In the following, we discuss

projects that are closely related to CHOPPER.

Shark [28] supports a column-oriented in-memory storage,

using RDDs [30], to efficiently run SQL queries and iterative

machine learning functions. This is achieved by re-planning

query execution mid-query if needed. Although Shark opti-

mizes execution plan of a workload while the workload is

running, unlike CHOPPER, Shark does not alter the number

of partitions at each Spark compute phase, which can help

optimize data movement between cluster nodes and load

balance between tasks.

Spartan [9] automatically partitions the data to improve

data locality in processing large multi-dimensional arrays in

a distributed setting. It transforms the user code into an

expression graph based on high-level operators, namely map,

fold, filter, scan and join update, to determine the communi-

cation costs of data distribution between the compute nodes.

Although Spark can be used to implement Spartan, in contrast

to CHOPPER, the partitioning approach proposed in Spartan

can not be applied directly to determine the optimal number of

partitioning in Spark at each stage (where a stage may present

unique execution characteristics that may not be represented

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

T
ot

al
 p

ac
ke

ts
 tr

an
sm

itt
ed

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Fig. 13. Total transmitted and received packets per second.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Time Stamp

PCA-Spark
PCA-CHOPPER

KMeans-Spark

KMeans-CHOPPER
SQL-Spark

SQL-CHOPPER

Fig. 14. Transactions per second.

by high-level operators).

Repartitioning MapReduce tasks has been actively stud-

ied [4], [5], [13], [15]. PIKACHU [5] improves load balancing

of MapReduce [4] workloads on clusters with heterogeneous

compute capabilities. It specifically targets the reduce phase

of MapReduce execution and schedules jobs on slow and fast

nodes such that jobs completion times are evened out across

all nodes. On the other hand, Stubby [15] optimizes the given

MapReduce workflow by combining multiple MapReduce jobs

into a single job. It searches through the plan space of a given

workflow and applies multiple optimizations, such as vertical

packing to combine map and reduce operations from multiple

jobs for reducing the network traffic. Similarly, SkewTune [13]

mitigates the skewness in MapReduce applications by first

detecting if a node has become idle in a cluster and then by

scheduling the longest job on the idle node. The optimizations

proposed in these systems share the goal of repartitioning

with CHOPPER, but are specific to MapReduce programming

model, and can not be applied directly to improve the parti-

tioning scheme in a Spark application. This is because, the

data partitioning for Spark need to consider characteristics

across multiple compute phases within a workflow, and not

just Map and Reduce phase. This concept can also help in

virtual machine management in cloud computing [17].

The Hardware Accelerated Range Partitioning (HARP) [26]

118

technique leverages specialized processing elements to im-

prove the balance between memory throughput and energy

efficiency by eliminating the compute bottlenecks of the data

partitioning process. HARP makes the case that using dedi-

cated hardware for data partitioning outperforms its software

counterparts and achieves higher parallelism. The approach

proposed in HARP is orthogonal to our work, and can be

used in conjunction with CHOPPER.

Several other works also propose solutions to optimize the

data partitioning problem in order to improve the processing

and storage performance of multi-processor systems [2], [12],

[24], [32], cloud storage systems [20], [25], [29], database sys-

tems [16], [18], [19], [27], and graph processing systems [1],

[6], [21], [23]. While not directly applicable to the context

of Spark and CHOPPER, the techniques proposed in these

works can be leveraged in CHOPPER to further improve the

data partitioning approaches inline with other system-level

constraints, e.g., storage optimization.

VI. CONCLUSION

In this paper, we design CHOPPER, a dynamic partitioning

approach for in-memory data analytic platforms. CHOPPER

determines the optimal number of partitions and the parti-

tioner for each stage of a running workload with the goal

of minimizing the stage execution time and shuffle traffic.

CHOPPER also considers the dependencies between stages,

including join and cogroup operations, to further reduce shuffle

traffic. By minimizing the stage execution time and shuffle

traffic, CHOPPER implicitly alleviates the task data skew

using different partitioners and improves the task resource

utilization through optimal number of partitions. Experimental

results demonstrate that CHOPPER effectively improves overall

performance by up to 35.2% for representative workloads

compared to standard vanilla Spark.

Our current implementation of CHOPPER has to re-train its

models whenever the available resources are changed. In fu-

ture, we plan to explore the per-stage performance models that

can work across different resource configurations, i.e., clusters.

We will also explore how CHOPPER behaves under failures.

These will further improve the applicability of CHOPPER in a

cloud environment, where compute resources are failure-prone

and scaled as needed.

VII. ACKNOWLEDGMENT

This work is sponsored in part by the NSF under the grants:

CNS-1405697, CNS-1422788, and CNS-1615411.

REFERENCES

[1] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. In Proc. ACM EuroSys,
2015.

[2] J. Cieslewicz and K. A. Ross. Data partitioning on chip multiprocessors.
In Proc. ACM Data Management on New Hardware, 2008.

[3] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proc. USENIX OSDI, 2004.

[5] R. Gandhi, D. Xie, and Y. C. Hu. Pikachu: How to rebalance load
in optimizing mapreduce on heterogeneous clusters. In Proc. USENIX

ATC, 2013.

[6] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In Proc. USENIX OSDI, 2014.

[7] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied

Statistics), 28(1):100–108, 1979.
[8] D. W. Hosmer Jr and S. Lemeshow. Applied logistic regression. John

Wiley & Sons, 2004.
[9] C.-C. Huang, Q. Chen, Z. Wang, R. Power, J. Ortiz, J. Li, and Z. Xiao.

Spartan: A distributed array framework with smart tiling. In Proc.

USENIX ATC, 2015.
[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed

data-parallel programs from sequential building blocks. In Proc. ACM

Eurosys, 2007.
[11] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.
[12] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and

L. P. Chew. Optimistic parallelism benefits from data partitioning. In
Proc. ACM ASPLOS, 2008.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: Mitigating
skew in mapreduce applications. In Proc. ACM SIGMOD, 2012.

[14] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Sparkbench: a
comprehensive benchmarking suite for in memory data analytic platform
spark. In Proc. ACM International Conference on Computing Frontiers,
2015.

[15] H. Lim, H. Herodotou, and S. Babu. Stubby: A transformation-based
optimizer for mapreduce workflows. In Proc. VLDB, 2012.

[16] R. Nehme and N. Bruno. Automated partitioning design in parallel
database systems. In Proc. ACM SIGMOD, 2011.

[17] A. K. Paul, S. K. Addya, B. Sahoo, and A. K. Turuk. Application of
greedy algorithms to virtual machine distribution across data centers. In
Annual IEEE India Conference (INDICON), 2014.

[18] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems. In Proc. ACM

SIGMOD, 2012.
[19] A. Quamar, K. A. Kumar, and A. Deshpande. Sword: Scalable workload-

aware data placement for transactional workloads. In Proc. ACM

International Conference on Extending Database Technology, 2013.
[20] C. Selvakumar, G. J. Rathanam, and M. R. Sumalatha. Pdds - improving

cloud data storage security using data partitioning technique. In Proc.

IEEE International Advance Computing Conference, 2013.
[21] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a

memory cloud. In Proc. ACM SIGMOD, 2013.
[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop

distributed file system. In Proc. IEEE MSST, 2010.
[23] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel:

Streaming graph partitioning for massive scale graphs. In Proc. ACM

International Conference on Web Search and Data Mining, 2014.
[24] A. Turcu, R. Palmieri, B. Ravindran, and S. Hirve. Automated data

partitioning for highly scalable and strongly consistent transactions.
IEEE Transactions on Parallel and Distributed Systems, 27(1):106–118,
2016.

[25] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi. Logbase:
A scalable log-structured database system in the cloud. In Proc. ACM

VLDB, 2012.
[26] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross. Navigating big data

with high-throughput, energy-efficient data partitioning. In Proc. ACM

ISCA, 2013.
[27] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query optimization for

massively parallel data processing. In Proc. ACM SoCC, 2011.
[28] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.

Shark: Sql and rich analytics at scale. In Proc. ACM SIGMOD, 2013.
[29] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan. A framework for

partitioning and execution of data stream applications in mobile cloud
computing. ACM SIGMETRICS Perform. Eval. Rev., 40(4):23–32, 2013.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Proc.

USENIX NSDI, 2012.
[31] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.

Spark: Cluster computing with working sets. In Proc. USENIX Hot-

Cloud, 2010.
[32] Z. Zhong, V. Rychkov, and A. Lastovetsky. Data partitioning on

multicore and multi-gpu platforms using functional performance models.
IEEE Transactions on Computers, 64(9):2506–2518, 2015.

119

