
2014 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)

Online Compiler as a Cloud Service

Arjun Dattal, Amab Kumar Paue
lResearch and Development

2M.Tech. in Software Engineering
lLexmark International India Pvt. Ltd.Kolkata, India

2National Institute of Technology, Rourkela,Odisha, India
1 arjundat07@gmaiLcom,2arnabkrpaul@gmail.com

Abstract: Often there is a need to have many compilers in the
same machine to compile programs in different languages at the
same time. This paper focuses on solving the problem of storage
and portability of compilers. The user without having to install
any compiler needs to submit the program into the user interface
provided. The controller will then decide which compiler server
the program should be assigned to compile, depending on the
load of backend compilers. The compiler server will compile and
run the program. The output is then given back to the user. The
distribution of load by the controller is also tested by calculating
the total response time of the programs in both serial and parallel
program allocation to compilation tier.

Keywords-Online Compiler, Cloud Computing, Load Balancing,
Multithreaded Programming

I. INTRODUCTION

Cloud Computing is computing that involves a large
number of computers connected through a communication
network such as the internet, similar to utility computing. [1]

The International Telecommunication Union (ITU) defines
'cloud service' as 'a service that is delivered and consumed on
demand at any time, through any access network, using any
connected devices using cloud computing technologies.' Cloud
Service is further classified into Cloud Software as a Service
(SaaS), Communications as a Service (CaaS), Cloud Platform
as a Service (PaaS), Cloud infrastructure as a service (IaaS)
and Network as a service (NaaS).

In this paper, we propose Online Compiler as a Software as
a Service (SaaS). A compiler transforms source code from a
higher level language to a lower, machine level language. This
is mainly done in order to create executable files which can
then be run in order to execute the program and its
instructions. [2]

Section II shows the Compiler Architecture. In Section III,
the algorithm is explained through pseudo code. The
experimental results are presented in Section IV. Finally, the
conclusion is drawn in Section V.

II. COMPILER SYSTEM ARCHITECTURE

The online compiler provides service for compiling
programs written in either C, C++ or Java. The user need not
have a compiler installed in his system. He has to just submit
the program to the user interface provided by either typing the
code in the text box provided or uploading the text file. The

ISBN No. 978-1-4799-3914-5/14/$3\.00 ©2014 IEEE

user will get the output after compilation. If compilation is not
successful, the errors are shown else the output is given.

The architecture of the online compiler is divided into 3
tiers - (a) User Interface Tier, (b) Controller Tier and
(c) Compilation Tier.

A. USER INTERFACE TIER

The User Interface Tier contains the user interface and the
database which is implemented using Microsoft SQL Server.
The user interface is a web application hosted on the liS Server
which provides the user an interface to submit their programs.
The user can submit by typing the code in the area provided or
by uploading the code as a file having the required extension
(.c for C, .cpp for C++ and java for Java program).

There are two types of users of the system-
I. Guest Users- Guest users are those users who do not register
with the system. They are provided with the functionality of
writing their programs using any mechanism and receiving
their output after a certain amount of time.
2. Registered Users- Registered users are those who register
with the system. These users are provided with certain added
features which are not provided to the regular guest. These
features are:

(a) Viewing of program history: The registered users are
able to view their past activity in the system.

(b) Viewing of program details: The registered users are
able to view each and every detail of every program they have
submitted. This includes codes and outputs as well as compile
and run status.

(c) Longer program execution time: The registered users
have a longer time for which the system waits in order to get
the output.

B. CONTROLLER TIER

The Controller Tier manages the interactions between User
Interface Tier and Compilation Tier. The Compiler Control
Centre is the central part of this tier.

The Compiler Control Centre has 3 parts-
1. Compiler Server Management- It enables the addition of
new compilation tier servers, viewing the status of existing
compiler servers and removal of compiler servers. It also pings
the compiler servers in certain fixed intervals to ensure that all
of them are running and active. In case a compiler server fails
to respond, it is marked as faulty so that no programs are

1783

2014 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)

assigned to it in future, and existing programs that are routed to
that compiler server can be re-routed to other active servers.
2. Scheduler Management- The scheduler fetches the un­
compiled program from the database and sends the program
data packet to the compilation tier servers.

3. Program Output Management- The "receive output server"
receives the compiled program packets sent by the compilation
tier servers and stores them in the database. The lIS server in
the User Interface Tier fetches the output from the database and
sends them to the web-client.

Figure 1 shows the Compiler Control Centre interface.

C. COMPILATION TIER

The compilation tier consists of "n" number of compiler
servers which are used to compile and execute the programs.
Each compiler server checks its CPU usage and available RAM
before accepting a program to compile it, run it and generate
the output. [f the CPU usage and available RAM are above a
pre-defined threshold value then it rejects the program. On
successful compilation and execution of a program, the
generated output is sent back to an Output Server in the
Controller Tier.

Figure 2 shows the complete compiler architecture.

III. ALGORITHM

/* Constants representing program states * /
WAITING = 0;
THREAD_ALLOCATED = 1;
OUTPUT_RECEIVED = 2;

/* Constants representing compiler server states */
STOPPED = 0;
RUNNNING = 1;

/* Constant representing a dummy server that does not exist * /
DUMMY = "dummy";

/* Constant representing maximum waiting time in minutes for
receiving output of a program after it is scheduled */

TIME_THRESHOLD = 3;

/* Constant representing maximum number of active threads * /
THREAD L1M[T = 25;

Start new thread "startProgramMonitorO";

/* Purpose: monitoring programs in the database */

Start new thread "receiveOutputO";

/* Purpose: monitoring output of programs scheduled to a
compiler server */

startProgramMonitorO

{
thread Count = 1;
while (true){

program List = getListOfprogramsFromDatabaseO;

[784

Figure 2 – Online Compiler Architecture

Figure 1 – Compiler Control Centre

2014 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)

for each (program in programList){
if (program.serverAllocated != DUMMY

&¤tTime - program. submission Time>
T[ME _THRESHOLD && program.state !=
OUTPUT _ RECE[VED){

program.serverAllocated.pendingPrograms -= 1;
program.serverAllocated = DUMMY;
program. state = WAITING; }

else if (program. serverA1I0cated == DUMMY
&&program.state == W A[T[NG){

}

while (threadCount>= THREAD _ L1M[T){
1* Do nothing and wait * I

}
Start new thread "allocateServer(program),,;

1* Purpose: Allocate a back-end compiler server to
the program *1

threadCount +=1;
program. state = THREAD_ALLOCATED;

}
}

}

allocateServer (program)

{
compilerServerList = getListOfCompilerServersO;

Sort compilerServerList in ascending order of priority;
for each (compilerServer in compilerServerList){

if (compilerServer.state == RUNNING
&& compilerServer.supportsLanguage

(program. language)&&program.state !=
OUTPUT _ RECE[VED){

if (compilerServer.

readyToAcceptNewProgramO) {
program.allocatedServer = compilerServer;
compilerServer.pendingPrograms += 1;
compilerServer.priority += [;
break; II Stop this thread execution

}
else 1* compilerServer rejects the program due to

server overload *1

compilerServer.priority += 2;

}

}
}

receiveOutput (program)

{
Update program. output in the Database;
program. state = OUTPUT_RECEIVED;
all ocatedCompi I erServer = program. server A II ocated;
allocatedCompilerServer.pendingPrograms -= [;
allocatedCompilerServer.priority -= [;

Explanation
The algorithm is based upon a multithreaded approach.

Initially two new threads startProgramMonitorO and
receiveOutput(program) are started. The startProgramMonitor

thread fetches the list of all programs from the database and
checks for various conditions to determine whether a program
needs to be sent to a back end compiler server for compilation.
There are two possible cases when a program needs to be
allocated for compilation.

[. A program which has not yet been allocated to a
backend compiler server

2. A program which has been allocated to a backend
compiler server but the output for that program
has not been generated within a stipulated time. [n
this case, it is assumed that the previously
allocated server is either unreachable or out of
order. And therefore, the program needs to be
reallocated to a new backend compiler server.

Once a program is identified for allocation to a backend
server, a new thread allocateServer(program) is started if the
current number of threads is within the THREAD L1M[T
constant. [f the number of threads has already reached the
predefined limit then the execution is suspended till the number
of threads falls below the limit.

[n the allocateServer(program) thread, the list of currently
running backend compiler servers is fetched from the database.
The servers are then sorted in ascending order of priority using
any suitable sorting algorithm. The thread then tries to send the
program to the compiler server with the lowest priority. [f the
compiler server accepts the program then the priority of that
server is increased by one. If the server is overloaded and
rejects the program, then the priority for that server is increased

Figure 3 - Total Time to deliver Output using parallel allocation of programs

[785

2014 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)

by two and the thread then tries to allocate the program to the
compiler server with the next highest priority. The logic behind
increasing the priority of the compiler servers while allocating
a program to it, is that during the iteration for the next program,
the compiler server which was chosen previously will be
having a higher priority and therefore the thread will instead try
to allocate to a compiler server with a lower priority which has
been allocated lesser number of programs so far and is
comparatively less overloaded.

Finally the receiveOutput(program) thread is responsible
for updating the output of a pre-allocated program in the
database. It also reduces the priority of the backend compiler
server which sent the output because it's pending jobs is
decreased. Therefore, that particular compiler server will have
a better rank in the priority list when the next program is
processed for allocation.

IV. EXPERIMENTAL RESULTS

The results are computed using a simple Java program of

public class DelayExample{

}

public static void main(String[] args){
Thread.sleep(lOOOO);
System.out.println("Simple Delay Test");

}

lOseconds delay as follows :-

The result is shown in Figure 3 which plots a graph of Total
Time to deliver Output against The number of Programs
submitted.

The compilers used to compile the programs are -
MinGW for C and C++, jdk l.6 for Java.

The configurations of systems used during the experiment
are -

Server end configuration

Intel Core i7 CPU @ 3GHz
8 GBRAM
500 GBHDD
Windows 7 Home Premium

Compilation tier configuration

Intel Core 2 Duo
2 GB RAM
320 GB HOD
Windows XP-SP3

As shown in Figure 3, the blue line indicates the total time
to deliver output with two Compiler Servers and the red line
shows the time using four Compiler Servers. In case of parallel
allocation of programs, the total time to deliver output for 500
programs is 2.0 I minutes or 121 seconds using 4 compiler
servers. If serial allocation of programs had been implemented,
then assuming that it takes 11 seconds for 1 delay program to
generate output, the total time to deliver the output for 500
programs would be 5500 seconds. Therefore the performance
is increased by a factor of 5500+121 or 45.45.

Also, the total time to deliver output of 500 programs
using 2 compiler servers is 2.09 minutes or 129 seconds.
Therefore the performance is increased by a factor of
5500+ 129 or 42.64.

Similarly, we can measure the performance boost for 4
compiler servers over 2 compiler servers. The performance is
increased by a factor of 129+ 121 or 1.06.

V. CONCLUSION

The cloud model described in this paper could be
implemented in scenarios where a large number of users will
need to compile their programs and view the output in minimal
time. An example of such a scenario is online coding contests
where the contestants need to submit their programs to a
central server for evaluation. The number of backend compiler
servers could be adjusted according to the expected number of
users of the system. As explained in Section IV through the
graph in Figure 3, increasing the number of backend compiler
servers results in considerable performance improvement.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Mariana Carroll, Paula Kotz':, Alta van der Merwe (2012).
"Securing Virtual and Cloud Environments". In I. Ivanovet
aI. Cloud Computing and Services Science, Service Science:
Research and Innovations in the Service Economy. Springer
Science+Business Media.
AamirNizam Ansari, SiddharthPatil, ArundhatiNavada,
AdityaPeshave, VenkateshBorole , "Online C/C++ Compiler using
Cloud Computing", Multimedia Technology (ICMT), July 2011
International Conference, pp. 3591-3594.
Software & Information Industry Association, "Software as a
Service: Strategic Backgrounder", February 2001
M. Ambrust, AFox et al " Above the Clouds: A Berkeley View Of
Cloud Computing", EECS Department, University Of California,
Berkeley, Technical Report No. UCB/EECB-2009-28, February
10, 2009
European Network and Information Security Agency (ENISA),
Cloud Computing: Benefits, Risks and Recommendations for
Information Security, Nov. 2009;
www.enisa.europa.eu/act/rmlfiles/deliverables/cloud-computing­
risk -assessment/at_down load/full Report.
Wikipedia, "Cloud computing," http://en.wikipedia.org/
wiki/Cloud_ computing.

1786

