CsLim: Automated Extraction of loT
Functionalities from Legacy C Codebases

Hyogi Sim"™*, Arnab K. Paul*, Eli Tilevich*, Ali R. Butt*, Muhammad Shahzad*

Oak Ridge National Laboratory', Virginia Tech*, North Carolina State University*

simh@ornl.gov,{akpaul, tilevich,butta}@vt.edumshahza@ncsu.edu

ABSTRACT

Many Internet of Things (IoT) devices are resource-poor,
possessing limited memory, disk space, and processor
capacity. To accommodate such resource scarcity, IoT
software cannot include any extraneous functionalities
not used in operating the underlying device. Although
legacy systems software contains numerous functionali-
ties that can be reused in IoT applications, these func-
tionalities are exposed as part of a larger codebase with
multiple complex dependencies and a heavy runtime
footprint. To enable programmers to effectively reuse
extant systems software in IoT applications, this paper
presents CsLIM, a cross-package function extraction tool
for C. CsLiM extracts programmer-specified functions
from a source package and generates new source files
for a target package, thereby enabling the reuse of sys-
tems software in resource-poor execution environments,
such as the IoT devices. CsLiM resolves all dependen-
cies by recursively extracting required functions, while
bypassing the complexities of preprocessor macro vari-
abilities by operating on preprocessed source files. Fur-
thermore, CsLiM efficiently traverses and resolves the
calling dependencies by maintaining an in-memory re-
lational database. Finally, CsLiM is easy to use, as it
requires neither manual intervention nor source code
modifications. Our prototype implementation of CsLim
has successfully extracted a set of functions from SQLite
and GlusterFS, producing slimmed down executables
that can be deployed on IoT devices.

ACM acknowledges that this contribution was authored or co-
authored by an employee, or contractor of the national government.
As such, the Government retains a nonexclusive, royalty-free right
to publish or reproduce this article, or to allow others to do so, for
Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice
and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. To copy other-
wise, distribute, republish, or post, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN 19, Bangalore, India

© 2019 ACM. 978-1-4503-6094-4/19/01...$15.00

DOI: 10.1145/3288599.3296013

CCS CONCEPTS

«Software and its engineering — Embedded soft-
ware; Maintaining software; Software usability;

KEYWORDS

Software Engineering, IoT

ACM Reference format:

Hyogi Sim™*, Arnab K. Paul’, Eli Tilevich*, Ali R. Butt*, Muhammad
Shahzad*. 2019. CsLim: Automated Extraction of IoT Functionalities from
Legacy C Codebases. In Proceedings of International Conference on Dis-
tributed Computing and Networking, Bangalore, India, January 4-7, 2019
(ICDCN °19), 6 pages.

DOI: 10.1145/3288599.3296013

1 INTRODUCTION

The C language is the lingua franca of systems software.
This language naturally fits the implementation require-
ments of various low-level system components, such
as operating systems and firmware, which put an em-
phasis on increasing execution efficiency and reducing
runtime footprint. C programs can be compiled into a
minimal number of machine instructions that can be
deployed in compact binaries. In particular, minimiz-
ing the executable binary code size becomes crucial in
restricted hardware and software environments (e.g.,
memory and storage capacity, available shared libraries,
etc.). Notably, an emerging trend of Internet of Things
(or IoT) [14] envisions intelligent and connected phys-
ical objects, from small hand-held devices to vehicles
and large buildings. Undoubtedly, the binary code size
can negatively impact the runtime performance, power
usage, and building cost of small-scale IoT devices.
One of the peculiarities of C programming is a lack
of standard libraries that represent common data con-
tainers and algorithms to facilitate the development pro-
cess [6]. In C, even a string is simply a null terminated
array of characters that must be explicitly allocated.
Higher-level libraries, such as glib [5], and qt [8], intro-
duce a space deployment overhead, as they require the
shipment of an entire shared library to be able to use
only a single module, such as a hash table; this overhead
can be prohibitive for deployments in small or restricted
environments. To eliminate the overhead, programmers

manually extract functions of interest from other soft-
ware packages, and modify them accordingly to fit a
target software package. Oftentimes, however, such
desired functions are chained in a complex calling de-
pendency in the package, rendering manual extraction
tasks tedious and error-prone. Software refactoring—
behavior-preserving code transformations [19]—can au-
tomatically extract these desired functions. Refactoring
can address the needs of the IoT community by reusing
the already stable and tested infrastructure to build ap-
plications for IoT devices.

In this paper, we present CsLIM, a cross-package func-
tion extraction tool for C. As an input, programmers
only need to specify a list of functions to be extracted
from the source package. Once the function list is pro-
vided, CsLM first scans the source package, analyzes the
calling dependencies, and creates a reference database.
It then recursively resolves the calling dependencies,
and calculates the final list of functions in the correct
order to appear in the new source files. Finally, CsLim
generates new .h and . c files, that are self-contained
and thus can be embedded in other software packages.
CsLiM sidesteps the complexity of handling C prepro-
cessor macros by operating on the output files of the C
preprocessor. As stated above, CsLIM targets restricted
environments, such as [oT devices. Consequently, inject-
ing static package configurations eliminates variabilities,
without compromising the efficacy and practicability of
CsriM. Furthermore, CsLim only manipulates the pack-
age source code, thus being architecture independent.

To evaluate our prototype of CsLim, we used SQLite [9]
as a test case because of its popularity in Android appli-
cation development. SQLite is preferred in small devices,
due to its lightweight nature and single-tier database
architecture. SQLite was designed to provide local data
storage for individual devices and applications. There-
fore, SQLite databases require little administration, mak-
ing them particularly well-suitable for devices that need
to operate without expert human support, such as those
used in the “internet of things” In addition to SQLite,
we also evaluate CsLim by successfully extracting func-
tions from GlusterFS [10], another open-source C pack-
age. GlusterFs is a scalable, distributed file system that
is well-suited for data-intensive tasks, such as media
streaming and cloud storage.

The remainder of the paper is organized as follows.
We explain our design (§ 2), and implementation (§ 3)
of Csiim, followed by our initial experience and find-
ings from our prototype (§ 4). We also present related
research work (§ 6), and then our conclusion and some
future directions (§ 7).

2 DESIGN OF CSLIM

CsLiM has been designed to conform to the following
criteria, to ensure its practicality.
No manual source code modification. Requiring
modifications to existing source may hurt ongoing de-
velopment productivity and code maturity. Moreover,
requiring source code modification prevents the inclu-
sion of new source packages, decreasing the tool’s adapt-
ability.
No manual processing. Semi-automated refactoring
can unreasonably burden developers, particularly for
larger codebases. Therefore, it is essential to obviate the
need for human intervention to ensure practicality.
Ease of maintenance. Individual source packages can
always be updated (e.g., to fix bugs, to add new features,
etc.) after the needed functions have been extracted. To
accommodate such updates, the framework should sup-
port incremental updates that free programmers from
hand-operated and error-prone manual patching.
Figure 1 shows the overview of CsLim. The user spec-
ifies the list of functions to extract from the source pack-
age, which we refer to as target functions. CsLim first
bootstraps the source package, primarily to avoid com-
plications of preprocessor macro variabilities. After the
bootstrapping, the source files in the source package are
scanned and all calling dependencies between functions
are analyzed. CsLIM stores the analysis results in the
reference database. Next, any calling dependencies in
target functions are resolved by consulting the reference
database. Finally, CsLiM generates the self-contained
target source files ready to be embedded in the target
package. We next detail each step of CsLim in turn.

2.1 Bootstrapping the source package

To start extracting functions from a source package,
we first bootstrap the source software package in two
phases: configuring the source package and running the
C preprocessor. In most cases, configuring a source pack-
age requires running its configure script, which takes
input flags that specify the target device architecture and
other building options, and generates appropriate build
scripts. The output build scripts contain all necessary
information to resolve the variabilities of preprocessor
macros. Then, the bootstrapping is completed by run-
ning the build scripts (e.g., Makefile), but only up to the
C preprocessor, as CsLim works at the source code level.
The output source files, with all preprocessor macros
stripped, can be further processed by CsrLim.

The preprocessor macros are known to significantly
complicate the analysis and transformation of C pro-
grams [12, 13, 20]. However, our bootstrapping step
eliminates the need for CsLim to directly address these

User Input

Target

Functions

Software Package

Target Package

Bootstrap .| Dependency .| Dependency g Code
source Source Analysis "1 Resolve "| Generation
file

Reference

A A

Database

- Package Configuration
- C Preprocessor

- Source Analysis (cscope)
- Calling dependencies

- Recursive extraction
- Resolve dependencies

- .c .h files generation
- Build script

Figure 1: Overview of the code extraction framework in CsLim. Based on the target function list, CsLim analyzes the
source package, resolves the calling dependencies in target functions, and generates the target source files.

complications. This shortcut should not affect the practi-
cal use of CsLIM, given our target development environ-
ments, which possess limited computing resources and
scarce libraries, (e.g., IoT devices) in which most soft-
ware packages are statically configured and optimized
specifically for a single target architecture.

2.2 Analyzing the source code

After the bootstrapping, CsLiM analyzes the source code
to identify any possible calling dependencies within the
functions to extract. For a systematic analysis, CsLim
records all functions and their calling interactions in
a relational database, whose data schema appears in
Figure 2. The Functions table records all functions in
the source package, each with its name and definition’s

Functions
FID | Function Name | Source File | Line Number
1 caller caller.c 24
L2 callee callee.c 51
T Calls
CID e -.., Caller FID - Callee FID
1 1 2

Figure 2: The simplified database schema to describe
the function interactions in the source package. This ex-
ample shows the table status of recording the calling re-
lationship between caller and callee, in which caller
calls callee.

location, including the source file name and the line
number. The Calls table records all calling occurrences
in the source package. For instance, in Figure 2, function
caller calling function callee means that if caller is
extracted, callee should be extracted as well. CsLim
uses this reference database to resolve any calling de-
pendencies between functions in the following steps.

CsLIM needs to scan all the files in the source pack-
age to populate the reference database. Csrim exploits
traditional UNIX tools, cscope [3] and ctags [2], for
scanning, as further described in § 3.

2.3 Resolving the calling dependencies

After the source package has been analyzed, CsLim recur-
sively resolves any dependencies in the target function
list, as presented in Listing 1.

First, both targets and unresolved lists are popu-
lated with the target functions, via populate_from_input ()
procedure. While targets is a static data structure,
unresolved keeps changing during the resolving pro-
cess. For instance, a function is initially added to the
unresolved list, and then removed as soon as its calling
dependencies are resolved. The algorithm resolves de-
pendencies by adding extra functions to be extracted
into the compats list. Specifically, the while loop in-
spects the functions in the unresolved list, which is
initially populated with the target functions. For each
function (£) in the unresolved list, the algorithm queries,
via invoking get_callees() to acquire any functions
(callees) called by the function f. If there exists any,
such callees are added to both compats and unresolve
lists. Then, the function f can be removed from the
unresolved list. In this manner, the loop continues until

unresolved = []
targets = []
3 compats = []

1
2

3

4

5 def populate_from_input () :

6 # read input file and return as a list
7

8

9

def get_callees (f):
look up callees from the reference

database

14 targets = populate_from_input ()

15 unresolved = populate_from_input ()

17 while unresolved.len() > 0:

18 for f in unresolved:

19 callees = get_callees (f)

20 for ¢ in callees:

21 if ¢ in not targets or compats:
22 unresolved.append(c)

23 unresolved.remove (c)

24 compats.append(c)

Listing 1: The pseudo code of recursively resolving
calling dependencies among target functions in
CsLim.

the unresolved list becomes empty. Upon the comple-
tion, the target list holds the target functions (in the
appearing order from the user input), while the compat
list contains extra functions in the order the calling de-
pendencies are resolved. As we will see shortly (§ 2.4),
keeping the order or the compat is important in gener-
ating the correct source file.

2.4 Generating the source code

First CsLiM generates the source files that can be in-
cluded in the target package. In addition to the source
files with the target functions, e.g., functions.h and

functions.c, CsLIM also generates compat .h and compat .

containing the declarations and definitions, respectively,
of the extra functions extracted to satisfy the calling
dependencies of the target functions. All source files are
generated in a target directory, e.g., /project/compat,
which can be specified by the user.

First, the target functions are extracted in the order of
the targets list in Listing 1, which exactly follows the
order of the target function list, provided by the user.
For each function, CsLiM extracts the function signature
(or prototype) and definition from the original source
files, by consulting the reference database that was pre-
viously built (§ 2.2). Next, the functions in the compats
list in Listing 1, are extracted and written to the result-
ing source files, compat.h and compat.c in the reverse
order. Note that the appearing order in the compat.c is

important to resolve the calling dependencies between
those functions. For instance, if function A is called by
another function B, function A should be written before
function B to avoid any potential compile errors.

After the source files are generated, Csrim finally
generates a build script, Makefile.am. The new build
script can facilitate the manual integration process, par-
ticularly when a package adopts the popular autoconf-
based build system.

3 IMPLEMENTATION

We prototyped CsLiMm with four separate programs writ-
ten in C++ and Python. For the initial analysis of the
source package, CsLIM relies on the output of cscope
and ctags, which are readily available in most UNIX-like
systems. Specifically, cs1im-createdb program, written
in C++, parses the output files of cscope and ctags
and creates the reference database using SQLite [9].
cscope is a popular development tool for browsing C
code. ctags works by generating an index or (a tag) file
of the program names found in the input source and
header files. This tag file allows definitions to be quickly
and easily located by any utility tools.

The remaining steps (i.e., resolving dependencies (§ 2.3)
and generating source codes (§ 2.4)) are implemented
in Python. An additional SQLite database file maintains
data structures while resolving the dependencies. Fi-
nally, a bash script, cslim.sh and a Makefile automate
all extraction steps. The bash script takes the name of
the input file, which lists target functions to be extracted,
as its argument.

4 EMPIRICAL STUDY

In this section, we demonstrate the viability of CsLim by
discussing experiments with two real-world softwares
written in C: SQLite [9] and GlusterFS [10].

4.1 Synthetic C Software

We wrote a synthetic C program that has internal call-
ing dependencies, to verify the correctness of Csrim.
Specifically, the program consists of a single header file
and four C source files. Each C file has 10 functions
(40 functions in total), calling each other 37 times. We
also wrote a main function, which calls 6 of the total
40 functions. In the baseline case, we compile all C
files to generate a single executable file. Using CsLiMm,
we extract the functions from the synthetic C files and
compile the program with the output files generated by
Csrim. Table 1 compares the result.

The number of functions are accounted from the re-
sulting executable file with nm command [4, 7], particu-
larly by counting the “T” section (text/code section). In

Number of functions Code size
Baseline 46 13,336 Bytes
CsLim 20 8,432 Bytes

Table 1: Comparison of resulting binary executables.

the baseline case, all 40 functions from the source pack-
age are included in the executable file. The executable
file also includes our main function and 5 other code
sections that are inserted by the compiler (e.g., _init,
_fini, _start). In comparison, CsLIM generated the ex-
ecutable file only with 20 functions. In fact, the calling
dependencies (from the 6 target functions) require 8
more functions to be extracted, resulting in extracting
14 functions. Note that exactly 20 functions appear in
the resulting executable file, including the main func-
tion and 5 compiler-generated functions. The size of
the executable file also effectively decreases, only 63%
of the baseline executable file.

4.2 Real-World C Software

We have also tested CsLim to extract functions from
SQLite [9] and GlusterFS [10]. Specifically, we have ex-
tracted sqlite3PageMalloc and sqlite3PageFree func-
tions from SQLite, and all functions from the dictionary
implementation (dict_*) in GlusterFS. A total of 14 and
103 extra functions have been additionally extracted
respectively from SQLite and GlusterFS, to satisfy the
calling dependencies.

5 DISCUSSION AND FUTURE WORK

We discuss the limitations that we have observed from
conducting the experiments. Although CsLiM can ex-
tract functions as expected, the output files still require
few manual tasks for the following reasons. First, CsLim
currently identifies the function body based on simple
string matching, which only works with some coding
styles. Second, our current prototype cannot correctly
extract custom type definitions that are required by the
target functions. These limitations could be addressed
by replacing the current parser with a more advanced
C source code parser, such as SuperC [13]. Also, CsLim
cannot autonomously modify the build script to stop
the build process after the C preprocessor, e.g., gcc -E.
Therefore, the user has to perform the bootstrapping
process (§ 2.1) by hand, before executing Cstim. We
plan to address these limitations in the future.

In addition, we plan to integrate the extra features
into CstiMm for providing a better usability. First, we plan
to append an additional step after the code generation,
to verify that the correctness of the extracted functions
is not compromised. Lastly, we also plan to add the
ability to incrementally merge any source updates (e.g.,

bug fixes) into the target source code by integrating with
a version control system (e.g., git).

6 RELATED WORK

We discuss the general challenges of refactoring C pro-
grams, along with the solutions offered by prior research
works. The biggest challenge in refactoring C programs
is the handling of C preprocessor macros, which is of-
ten treated as a separate language [1, 11]. In essence, a
macro is a name given to a block of C statements as a
pre-processor directive. The #define directive defines
an identifier and a character sequence that will be substi-
tuted for the identifier each time it is encountered in the
source file. The identifier is referred to as a macro name
and the replacement process as macro replacement.
TypeChef [16] detects type errors without having
to generate all variants imposed by #ifdef directives.
In TypeChef, the preprocessor partially processes the
preprocessor directives, and separately analyzes the
variabilities. Although the approach of TypeChef is
promising, its parser requires implementation-specific
knowledge about the target source code and cannot an-
alyze arbitrary C codes. Another approach of handling
C preprocessor macro is to design and develop a new
preprocessor language for C. For instance, ASTEC [17]
features similar functionality and usage to the original C
preprocessor macro, but is analyzable and refactorable.
However, it lacks support for C++. Moreover, convert-
ing existing source code to ASTEC framework requires
human intervention, making it practically less appealing,.
Yacfe [21] is a parser that can analyze C/C++ source code
without preprocessor macros. This heuristics-based
parser can handle large C projects, at the cost of compro-
mising correctness. A similar heuristics-based approach
is supported by Coccinelle [22], which automatically
generates documentation and collateral evolutions as
a patch file to assist developers of device drivers in the
Linux kernel. SuperC [13] is the first framework that can
completely parse C programs including the preproces-
sor macros. The preprocessor of SuperC preserves the
variability, which is subsequently resolved by the parser
that spawns multiple processes for each static condition.
Despite these alternatives, experienced developers still
often resort to using the C preprocessor for portability
and variability reasons [18]. Although refactoring the
preprocessed C code is ill-advised in general [12], CsLiM
leverages the unique features of our target environment
(i-e., IoT devices), thus safely eliminating the source code
variabilities and operating on the preprocessed code.
There are many works which focus on optimizing
resource consumption in distributed systems [23, 24].

In this paper, we focus on several works which opti-
mize consumption of resources in constrained environ-
ments for other languages. For instance, a code cache
management technique dynamically unloads dead and
infrequently used code in JIT-based JVMs for mobile
and embedded devices [26]. Specifically, the presented
system profiles applications online and offline to select
candidates for code unloading. Other techniques have
also been used to reduce memory consumption in such
environments. To balance memory and performance by
reducing re-translation, selective flushing of software
code has been proposed [15]. In addition, managing
code cache while maintaining correctness and minimiz-
ing memory consumption has also been proposed for
resource constrained environments [25]. CsLim compli-
ments the aforementioned techniques, as it reduces the
code size in such resource constrained environments
by selectively extracting a minimal amount of target
functions from generic C libraries.

7 CONCLUSION

We presented CsLiM, an automatic source-code refac-
toring tool that extracts functions of interest from a
source package after resolving their calling dependen-
cies, while bypassing the preprocessor macro complexi-
ties, and then generates source code that can be directly
included in any target packages. CsLIM supports re-
stricted development environments, such as IoT devices,
vastly reducing their dependence on external library
code. Without requiring any source code modifications
or manual intervention, CsLIM can be easily adopted as
a development tool by IoT developers.

REFERENCES

[1] 1987. The C Preprocessor - GCC - GNU. https://gcc.gnu.org/
onlinedocs/cpp/. (1987). Accessed: Sept, 2018.

[2] 2009. Exuberant Ctags. https://ctags.sourceforge.net/. (2009).
Accessed: May, 2018.

[3] 2012. Cscope Home Page. https://cscope.sourceforge.net/. (2012).
Accessed: July, 2018.

[4] 2016. Autoconf - GNU Project - Free Software Foundation.
http://www.gnu.org/software/autoconf/autoconf.html. (2016).
Accessed: Sept, 2018.

[5] 2018. GLib - GNOME Developer Center. https://developer.gnome.
org/glib/stable/. (2018). Accessed: July, 2018.

[6] 2018. Glibc - GNU. https://www.gnu.org/software/libc/. (2018).
Accessed: May, 2018.

[7] 2018. GNU Binutils. https://www.gnu.org/software/binutils/.
(2018). Accessed: Sept, 2018.

[8] 2018. Qt - Home. https://www.qt.io/. (2018). Accessed: Sept,
2018.

[9] 2018. SQLite Home Page. https://www.sqlite.org/. (2018). Ac-
cessed: Sept, 2018.

[10] 2018. Storage for your Cloud. — Gluster. http://www.gluster.org.
(2018). Accessed: Sept, 2018.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25

[}

[26]

Alejandra Garrido and Ralph Johnson. 2002. Challenges of Refac-
toring C Programs. In Proceedings of the International Workshop
on Principles of Software Evolution (IWPSE "02).

A. Garrido and R. Johnson. 2003. Refactoring C with Condi-
tional Compilation. In 2003. Proceedings. 18th IEEE International
Conference on Automated Software Engineering.

Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C
by Taming the Preprocessor. SIGPLAN Not. 47, 6 (June 2012).
Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. 2013. Internet of Things (IoT): A Vi-
sion, Architectural Elements, and Future Directions. Future
Generation Computer Systems 29, 7 (2013).

Apala Guha, Kim Hazelwood, and Mary Soffa. 2010. Balanc-
ing Memory and Performance through Selective Flushing of
Software Code Caches. In Proceedings of the 2010 international
conference on Compilers, architectures and synthesis for embedded
systems. ACM, 1-10.

Christian Kistner, Paolo G. Giarrusso, Tillmann Rendel, Se-
bastian Erdweg, Klaus Ostermann, and Thorsten Berger. 2011.
Variability-Aware Parsing in the Presence of Lexical Macros and
Conditional Compilation. In Proceedings of OOPSLA ’11.

Bill McCloskey and Eric Brewer. 2005. ASTEC: A New Approach
to Refactoring C. SIGSOFT Softw. Eng. Notes 30, 5 (Sept. 2005).
Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Sarah Nadi,
and Rohit Gheyi. 2015. The Love/Hate Relationship with the
C Preprocessor: An Interview Study. In 29th European Confer-
ence on Object-Oriented Programming (ECOOP 2015), John Tang
Boyland (Ed.), Vol. 37.

Tom Mens and Tom Tourwé. 2004. A Survey of Software Refac-
toring. IEEE Transactions on Software Engineering 30, 2 (2004).
Jeffrey L. Overbey, Farnaz Behrang, and Munawar Hafiz. 2014.
A Foundation for Refactoring C with Macros. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2014).

Yoann Padioleau. 2009. Parsing C/C++ Code Without Pre-
processing. In Proceedings of the 18th International Conference
on Compiler Construction: Held As Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009 (CC
09).

Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles
Muller. 2008. Documenting and Automating Collateral Evolu-
tions in Linux Device Drivers. In ACM SIGOPS Operating Systems
Review, Vol. 42.

Arnab K Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R Butt,
Michael J Brim, and Sangeetha B Srinivasa. 2017. I/o load bal-
ancing for big data hpc applications. In 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 233-242.

Arnab Kumar Paul, Wenjie Zhuang, Luna Xu, Min Li, M Mustafa
Rafique, and Ali R Butt. 2016. Chopper: Optimizing data parti-
tioning for in-memory data analytics frameworks. In 2016 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
110-119.

Forrest] Robinson, Michael R Jantz, and Prasad A Kulkarni. 2016.
Code Cache Management in Managed Language VMs to Reduce
Memory Consumption for Embedded Systems. In ACM SIGPLAN
Notices, Vol. 51. ACM, 11-20.

Lingli Zhang and Chandra Krintz. 2004. Profile-Driven Code
Unloading for Resource-Constrained JVMs. In Proceedings of
the 3rd international symposium on Principles and practice of
programming in Java. Trinity College Dublin, 83-90.

https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/
https://ctags.sourceforge.net/
https://cscope.sourceforge.net/
http://www.gnu.org/software/autoconf/autoconf.html
https://developer.gnome.org/glib/stable/
https://developer.gnome.org/glib/stable/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/binutils/
https://www.qt.io/
https://www.sqlite.org/
http://www.gluster.org

	Abstract
	1 Introduction
	2 Design of Cslim
	2.1 Bootstrapping the source package
	2.2 Analyzing the source code
	2.3 Resolving the calling dependencies
	2.4 Generating the source code

	3 Implementation
	4 Empirical Study
	4.1 Synthetic C Software
	4.2 Real-World C Software

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	References

