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Abstract—The processor performance of high performance
computing (HPC) systems is increasing at a much higher rate
than storage performance. This imbalance leads to I/O per-
formance bottlenecks in massively parallel HPC applications.
Therefore, there is a need for improvements in storage and
file system designs to meet the ever-growing I/O needs of HPC
applications. Storage and file system designers require a deep
understanding of how HPC application I/O behavior affects
current storage system installations in order to improve them. In
this work, we contribute to this understanding using application-
agnostic file system statistics gathered on compute nodes as
well as metadata and object storage file system servers. We
analyze file system statistics of more than 4 million jobs over
a period of three years on two systems at Lawrence Livermore
National Laboratory that include a 15 PiB Lustre file system for
storage. The results of our study add to the state-of-the-art in
I/O understanding by providing insight into how general HPC
workloads affect the performance of large-scale storage systems.
Some key observations in our study show that reads and writes
are evenly distributed across the storage system; applications
which perform I/O, spread that I/O across ∼78% of the minutes
of their runtime on average; less than 22% of HPC users who
submit write-intensive jobs perform efficient writes to the file
system; and I/O contention seriously impacts I/O performance.

I. INTRODUCTION

The current trend for high performance computing (HPC)

systems is that processor performance improves at a rate

of 20% per year, while disk access time improves by only

10% every year [7]. As a result, massively parallel HPC

applications can suffer from imbalance in computation and

I/O performance, with I/O operations becoming a limiting

factor in application efficiency [15]. To mitigate this problem,

much effort has been dedicated to implementing high perfor-

mance parallel file systems to support the I/O needs of HPC

applications. The Lustre file system [25] is one of the most

widely-used parallel file systems, supporting seven of the top

ten supercomputers in the latest Top-500 list (June, 2020) [1].

Even though HPC parallel file systems, such as Lustre, pro-

vide much higher bandwidth and reliability than other options,

continual improvement of parallel file systems is needed to re-

duce the impact of the increasing I/O performance bottleneck.

File system designers need a comprehensive understanding of

the I/O workloads on current HPC systems so that they can

design successful next-generation file systems. Additionally,

HPC system designers and system administrators need to

understand both file system and application behavior so that

they can design and tune HPC systems to run as efficiently

as possible. Traditionally, I/O and storage analysis efforts

have concentrated on analyzing application I/O behavior from

application-level statistics [8], [9], [13], [18], [24], [28], [36],

and there have been significant studies on the I/O workloads

of large scale systems [2], [3], [4], [15], [19], [41], [42] which

identify potential I/O bottlenecks in applications and suggest

improvements to HPC users. However, while these studies

can give clues about how particular applications utilize and

stress HPC file systems, they do not give true insight into

storage system performance under a general load. Thus, in

order to draw meaningful conclusions about how to improve

parallel file system designs for all users of an HPC system, we

need to analyze statistics captured from the file system itself

(from file system data on compute nodes and from data on

servers that manage the I/O requests from HPC applications)

independently of user applications.

Some of the earliest studies of HPC file systems utiliz-

ing system statistics were in 2010 [38], [45]. These works

analyzed the deployment of Lustre file systems and lessons

learned from them. However, to the best of our knowledge,

there have not been efforts which analyze file system statistics

in an application-agnostic manner to understand how to sup-

port a general HPC workload. Lawrence Livermore National

Laboratory (LLNL) is home to a variety of clusters that utilize

Lustre file systems as primary storage, and millions of jobs run

on these systems. In this effort, we take advantage of the Lustre

resources at LLNL and perform a study of general application

behavior using file system statistics from Lustre.

In this paper, we collect and study file system statistics from

two Livermore Computing systems with 15 PiB Lustre file

systems at LLNL, namely Quartz and Cab1. We collect two

types of data from these systems.

• Aggregate Job Statistics: This data represents aggregate

statistics collected from file system daemons on compute

nodes for all jobs that ran on these two systems during

the logging period: for Cab April 2015 – March 2018,

and for Quartz April 2017 – March 2018.

• Time-Series Job Statistics: This data represents time

series data collected at 60-second intervals from the

metadata server and object storage servers of Lustre for

each job; i.e., for each job, we record summary statistics

1Cab was decommissioned in June 2018.
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for every minute of the running job during which I/O

operations occurred. We collected this data from Quartz

for the period June 7, 2018 – July 10, 2018.

We analyze these system statistics without knowledge of the

types of applications running on these systems with the goal

of answering questions such as:

• What are the typical I/O characteristics of I/O-heavy

jobs? For example, do the jobs perform efficient writes

with large byte counts per operation? Or do they perform

many small (inefficient) write requests?

• How do I/O operations of jobs affect the metadata server?

• Is I/O traffic heavier on any particular day of the month

or day of the week?

• Can a single long-running job have a significant affect on

the performance of the object storage servers?

• How does the size of application output files correlate

with compute node memory size?

• How do metadata operations spread across the different

metadata servers?

• Does I/O contention affect the I/O performance in the

system?

Our study of application-agnostic I/O statistics from the Lustre

file system contributes to the state-of-the-art in I/O behavior

understanding. We provide insight into how general HPC

workloads affect the performance of file systems, which can

aid system architects in improving file system and storage

system designs and system administrators in tuning existing

systems and advising users of best practices. These improve-

ments will help to alleviate the I/O imbalance in HPC systems

and increase the overall efficiency of HPC applications.

II. BACKGROUND

In this section, we first describe the architecture of the Lus-

tre file system. Following this, we describe LLNL computing

systems we utilized in this work.

A. Lustre Distributed File System

Fig. 1: An overview of Lustre architecture.

The architecture of the Lustre file system is shown in

Figure 1. Lustre has a client-server network architecture and is

designed for high performance and scalability. The Manage-
ment Server (MGS) is responsible for storing the configuration

information for the entire Lustre file system. This persistent

information is stored on the Management Target (MGT). The

Metadata Server (MDS) manages all the namespace opera-

tions for the file system. The namespace metadata, such as

directories, file names, file layout, and access permissions are

stored in an Metadata Target (MDT). Every Lustre file system

must have a minimum of one MDT. Object Storage Servers
(OSSes) provide the storage for the file contents in a Lustre

file system. Each file is stored on one or more Object Storage
Target (OST)s mounted on the OSS. Applications access the

file system data via Lustre clients which interact with OSSes

directly for parallel file accesses. The internal high-speed data

networking protocol for Lustre file system is abstracted and is

managed by the Lustre Network (LNet) layer.

B. Clusters

Cab Quartz
Processor Architecture Xeon 8-core E5-2670 Xeon 18-core E5-2695

Operating System TOSS 2 TOSS 3

Processor Clock Rate 2.6 GHz 2.1 GHz

Nodes 1,296 2,634

Cores per node 16 36

Total Cores 20,736 96,768

Memory per node 32 GB 128 GB

Total Memory 41.5 TB 344.06 TB

Interconnect QDR Infiniband Intel Omni-Path 100 Gb/s

Tflops 426.0 3,251.4

TABLE I: Cluster Configurations.

Table I gives an overview of the two compute clusters (Cab
and Quartz) at LLNL used in our study. Both clusters have

a 15 PiB Lustre file system as primary storage.

III. DATA COLLECTION

We collected two categories of file system data from Cab
and Quartz.

• Aggregate Job Statistics

• Time-Series Job Statistics

A. Aggregate Job Statistics

The aggregate job statistics were collected on the client

(compute) nodes, by gathering Lustre counter data just before

and after the job runs, and calculating the difference. The

counter data are acquired from /proc/fs/lustre/llite/lustre-file-
system/stats which is exported by the Lustre client. The

statistics in this file reflect the requests as they pass through

the interface between the Linux Virtual File System (VFS) and

Lustre. Any file system request handled entirely by VFS is not

included, nor is a background activity such as re-transmission

of a low-level Lustre (not user process) request after server

recovery from a crash. All the read- and write-related system

calls result in VFS calling into Lustre code, so the read- and

write-related counters we use reflect every system call the

job made. The statistics are per file system, not per Lustre

OSS. These counters start at 0 when the Lustre file system is

mounted, and are monotonically increasing until they wrap at

263 − 1.

The specific statistics used are:

• starttime, endtime, duration, uid, nodes: These give the

time when the job was started, when it ended, the duration

of the job, the anonymized user ID of the job submitter,

and the number of nodes on which the job ran.

• mkdir, mknod, open, rename, rmdir, unlink: These are the

total metadata statistics recorded for the job.
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• read bytes, write bytes: These represent the total number

of bytes read and written by the job to the Lustre file

system.

• read bytes count, write bytes count: These give the

number of read and write calls made by the job to the

Lustre file system.

• recv bytes, recv count, send bytes, send count: These

network statistics give the number of packets received

and sent as well the number of bytes received and sent

over LNet.

Both Cab and Quartz use the SLURM job scheduler [37].

SLURM was configured to run a prolog script after nodes

have been allocated, but before the user’s job script is run.

This prolog script records the counts from the Lustre procfile

(/proc/fs/lustre/llite/lustre-file-system/stats) at that time, for

each node in the allocation. After the job script completes,

slurm runs an epilog script. For each node in the allocation,

the epilog script extracts the counters from the procfile, and

calculates the difference between the “after” and “before” val-

ues for each counter. These per-node totals are then summed

to obtain the total for the job. This total is stored in an RDMS

database, which we queried for this data collection.

The Aggregate Job Statistics were collected on Cab for

three years (April 2015 – March 2018), whereas on Quartz,

they were collected for one year (April 2017 – March 2018).

B. Time-Series Job Statistics

Time series data on Lustre file system usage was gathered on

the Lustre server nodes via the Lustre JobStats feature [21],

[40], [34]. JobStats includes a job ID in every request the

Lustre client sends to the servers. The Lustre server records

statistics describing the requests received per Job ID [31], [35].

As a result, file system requests which are handled entirely by

VFS, or which are satisfied by cached data on the client node,

are not reflected in JobStats data. These statistics are gathered

per-server, so the total I/O for a job is the sum of the values

reported by all servers. File system read() and write()
related requests include a count of bytes to be transferred.

JobStats records the number of such requests received, the

minimum and maximum byte count seen in requests received

so far, and the sum of bytes transferred. If no requests for a

given job ID are received for 600 seconds, statistics for that

job ID are discarded. The absence of a job ID in the statistics

on a server means the server received no requests for that job

within the last 600 seconds, and so is equivalent to 0 valued

counters.

We collected data from the servers using Telegraf [11]

and a customized lustre2 plugin which samples the statistics

by reading /proc files Lustre exports. The proc files were

/proc/fs/lustre/mdt/*/job stats on Lustre metadata servers, and

/proc/fs/lustre/obdfilter/*/job stats on Lustre object storage

servers. We took one sample every 60 seconds. The data

gathered by Telegraf was stored in influxdb [10]. The raw

samples were dumped from influxdb as CSV for analysis.

The specific statistics used are:

• MDS - jobstats create, jobstats mkdir, jobstats mknod,
jobstats open, jobstats rename, jobstats rmdir, job-
stats unlink

• OSS - jobstats read bytes, jobstats read calls, job-
stats write bytes, jobstats write calls

• jobid, time - Every statistic has a job ID and timestamp

attached to it.

Time-Series Job Statistics were collected on Quartz for a

period of 34 days (June 7, 2018 – July 10, 2018).

IV. ANALYSIS

Jobs running for less than 24 hours were considered in our

study. At LLNL, for longer-running jobs, Dedicated Access

Time (DAT) is given. From our dataset, we saw that the per-

centage of cumulative compute time by DAT jobs was 2.23%

and 8.74% on Cab and Quartz respectively. Therefore, the

studied non-DAT jobs occupied more than 91% of the clusters

over a period of years, which is a significant percentage of the

total resource.

On Cab, the aggregate job statistics were collected for a

period of three years (April 2015 to March 2018). 2,854,478
total jobs ran during this period. The number of unique users

which ran the jobs is 994.

On Quartz, the aggregate job statistics were collected for a

year (April 2017 to March 2018). 1,401,897 jobs ran during

the one year and there were 584 unique users.

A. Duration of Jobs & Number of Nodes Used

To gain insight into the behavior of jobs in terms of their

duration and the number of nodes used, we plot Cumulative

Distribution Function (CDF) for both of these metrics for Cab

and Quartz in Figure 2.

As seen from Figures 2a and 2b, more than 90% of jobs

run for less than 2 hours on both Cab and Quartz. For number

of nodes used, Figures 2c and 2d show that 90% of the jobs

use less than 100 nodes.

Table II shows the detailed statistics for duration and

number of nodes allocated.

Metric Cluster min max mean median
Duration
(hours)

Cab 0.0003 23.9 0.8 0.003
Quartz 0.0003 23.9 0.85 0.03

#Nodes
Cab 2 758 19.7 8
Quartz 1 1197 19.8 8

TABLE II: Statistics for duration and nodes for all jobs.

Observation: A huge effort has already been given in HPC
storage systems to optimize I/O performance for long running
jobs [27], [30]. However, we see that the majority of jobs on a
representative real-world system consist of short-running jobs
which do not occupy a lot of nodes on the system. Therefore,
there should be an equal effort to optimize the I/O performance
of small jobs.

B. Distribution of Read-intensive and Write-intensive Jobs

We group jobs by users and analyze the read and write

percentage of jobs run by them. This is shown in Figure 3.
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(a) Cab: CDF Duration (b) Quartz: CDF Duration (c) Cab: CDF #Nodes (d) Quartz: CDF #Nodes

Fig. 2: Cumulative Distribution Function for Duration and #Nodes in Cab and Quartz.

We find that some users run purely write-intensive workloads

and some users run only read-intensive workloads.

Observation: We observe that read-intensive and write-
intensive jobs are distributed evenly across users. Previously, a
lot of work has been done to optimize performance for write-
intensive workloads. However, with the increase in machine
learning workloads, which are predominantly read-intensive,
there has been an overall rise in number of read-intensive
workloads. Therefore, there should be an equal focus in
optimizing both reads and writes in a parallel file system.

C. Efficient and Inefficient Writes

Jobs with inefficient writes are jobs which write a large

amount of data but whose number of bytes per write call

is very low. We understand that small amount of writes per

write call can be aggregated and Lustre does optimize these

accesses before sending them to the storage servers. However,

we observed that I/O performance is reduced for those write-

intensive applications which perform low writes per call. We

calculate the mean of bytes written by all jobs performing I/O.

We also calculate the mean value of bytes written per call for

all the jobs performing I/O.

Jobs with inefficient writes have total bytes written greater

than the mean total write bytes across all jobs and bytes written

per call is less than the mean value of writes per call across all

jobs. Jobs with efficient writes have both write bytes as well

as the bytes written per write call greater than the respective

mean values across all jobs.

• Jobs with inefficient writes: (bytes written > mean bytes

written) and (bytes written per call < mean bytes written

per call)

• Jobs with efficient writes: (bytes written > mean bytes

written) and (bytes written per call > mean bytes written

per call)

We first see how many jobs had inefficient writes and then

we focus on the users by grouping jobs by user IDs. The

statistics for write bytes and write bytes per call on both Cab

and Quartz are shown in Table III.

• Classification by Jobs: On Cab, out of 2,563,299 jobs

which write more bytes than the mean value, 1,654,938

jobs (64.6%) had inefficient writes. On Quartz, out of

1,295,473 jobs, the number of jobs with inefficient writes

was 893,462 (69%). The number of jobs with efficient

writes on Cab and Quartz were 869,046 and 277,911

respectively.

• Classification by Users: On Cab, out of the 294 users

whose jobs write more than the mean value of write

bytes, the number of users performing inefficient writes

was 138 (46.9%) and the number of users performing

efficient writes was 62 (21%). On Quartz, the number of

users performing inefficient and efficient writes were 111

(66%) and 57 (34%) users respectively out of 168 users

who write more than the mean value of write bytes.

Observation: The number of jobs and correspondingly the
number of users who perform efficient writes is small. There-
fore, HPC application developers should be trained to write
optimal number of bytes per write call so that the applications
can achieve better I/O performance.

D. Relationship between Metadata and I/O

We sum all metadata operations in a job (open, close,
mknod, mkdir, link, unlink, rmdir, and rename) and compare

the sum with the write bytes for that job. The log-scale values

are plotted and are shown in Figure 4. In both Cab and Quartz,

it is seen that the number of metadata operations become larger

for larger number of bytes written.

The best correlation coefficient, R, can be found for mkdir
and mknod (R = 0.93) indicating a strong correlation between

file creations and write operations.

Observation: There is a positive correlation between meta-
data operations and writes, specifically for mkdir and mknod.
Therefore, to improve the I/O performance, metadata opera-
tions need to be handled carefully by the metadata servers.

E. Behavior of Metadata Servers

To manage the increase in metadata, Lustre incorporates

distributed namespace (DNE) [20] - more than 1 MDTs

in large HPC storage systems. Here, Lustre has 14 MDTs.

The number of file opens and close requests which are being

handled by different MDTs are shown in Figure 5.

It is seen in Figure 5 that the number of file opens that being

handled is consistent with the number of jobs and is expected.

However, we observe that not all files which are opened are

closed. Moreover, the number of file open requests handled

by different MDTs are different.

Observation: Not all files which are opened are closed
which can lead to sub-optimal metadata performance due to
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(a) Cab: Percentage I/O by user. (b) Quartz: Percentage I/O by user.

Fig. 3: Read and write percentage of users on Cab and Quartz.

Classification Metric Cluster min max mean median

Jobs
Write bytes

Cab 81 KB 474 TB 14.4 GB 39 GB
Quartz 40 Bytes 597 TB 18.1 GB 146 GB

Write bytes
per call

Cab 1 Byte 820 MB 127 KB 390.9 KB
Quartz 1.0 Byte 1.6 GB 219 KB 11.5 MB

Users
Write bytes

Cab 906 KB 4.8 PB 41.4 TB 7.4 TB
Quartz 424 KB 4 PB 43.4 TB 27.1 TB

Write bytes
per call

Cab 178 KB 30.5 GB 184.7 MB 123.9 MB
Quartz 899 KB 108.9 GB 350.4 MB 86.2 MB

TABLE III: Statistics for write bytes and write bytes per call for all jobs and users performing I/O on Cab and Quartz.

Fig. 4: #Metadata operations vs #Write operations.

Fig. 5: #File opens and close handled by different MDTs .

dangling file pointers. Therefore, HPC users should be trained
to always close open files. Additionally, there is room for effort
in balancing the metadata load across metadata targets for
improving the overall I/O performance.

F. Temporal Analysis of I/O Traffic

For this analysis, we asked three questions of our dataset.

a) Is there any trend in I/O activity for particular months,
days of the month, or days of the week?:
Are more I/O intensive jobs run during the weekend? Do

people run less number of jobs on holidays? To answer these

questions, we plotted heat maps showing the I/O traffic over

the whole data collection period. Due to space constraints, we

only show the year 2017 in Figure 6. As seen in the heat maps,

there was no particular trend shown by I/O traffic. Therefore,

I/O traffic from jobs cannot be predicted by the job start time

with respect to the calendar or holidays.

b) How much does a job which runs for the maximum
duration affect the overall I/O traffic in a month, day, or a
day of the week?:
We explored whether a job which ran for a long period tended

to be responsible for a large portion of the I/O traffic in a

system. We chose the jobs which ran for the longest period of

time in a day, or a day of the week. We then calculated the

percentage of total system I/O traffic contributed by each of

those jobs. Figure 7 shows the contribution of a job which runs

for the maximum duration to the overall traffic in a particular

day and day of the week in the year 2017. There are few days

where the contribution is significant, but overall, no significant

effect was seen.

c) How much does a user with the highest bytes read or
written in a day or a day of the week affect the overall I/O
traffic?:
Our last question was how much does one user’s I/O contribute

to the overall I/O traffic in the system. To help answer this

question, we found the users who performed the maximum

I/O (highest bytes read or written) on a particular day or a

day of the week. Then, we calculated the percentage of total
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(a) Cab: I/O Per Day (b) Cab: I/O Per Day of Week (c) Quartz: I/O Per Day (d) Quartz: I/O Per Day of Week

Fig. 6: I/O Heat Map for 2017 per day and per day of the week in Cab and Quartz.

(a) Cab: Per Day (b) Cab: Per Day of Week (c) Quartz: Per Day (d) Quartz: Per Day of Week

Fig. 7: Contribution of Job with Maximum Duration on I/O for a day and a day of the week in 2017.

system I/O these users contributed to that day or day of the

week. Figure 8 shows the contribution of users with maximum

I/O on the overall I/O traffic for the year 2017. As can be seen,

these users have a very significant impact on the overall I/O of

the system. Therefore, job schedulers ideally would schedule

other jobs with little or no I/O while these users run their jobs

to reduce I/O contention and job run time.

Observation: There is no particular trend of I/O corre-
sponding to a month, day of a month, or day of a week.
Therefore, HPC I/O intensive jobs cannot be less I/O con-
tended if submitted during a particular time. As expected, the
I/O during a particular time when multiple I/O intensive jobs
run on the system, is dominated by the job which does the
maximum I/O rather than the job which runs for the maximum
duration. Therefore, I/O optimizations should not be focused
for long running jobs, and there is no correlation between the
duration of a job and the amount of I/O requests that the job
generates.

G. Temporal distribution of I/O within jobs’ runs

More than 53% of the jobs submitted to the clusters perform

some I/O. But how are the I/O operations distributed across

the jobs’ run time?

All 16,795 jobs in the time-series dataset performed some

I/O (the collection method excludes jobs without I/O). Of those

jobs, 11,425 performed either read, write, or both operations.

10,443 jobs performed write operations. Since the time-series

dataset records reflect I/O performed during each one-minute

span, we can determine what percentage of the minutes during

a job’s run saw some I/O performed. We will call this

percentage “I/O share”. Note that during a given minute a

single byte written or read causes that minute to be included in

the I/O share, even though the I/O may have taken only a small

fraction of a second. Figure 9 shows the I/O share for jobs

which performed read, write, or both operations. The mean I/O

share for these jobs is 78.8%. I/O share for jobs performing

write operations is shown in Figure 10. The mean is 80.4%.

Both graphs in Figures 9 and 10 are similar, therefore write

operations dominate the I/O performed by jobs.

Observation: On average, jobs which perform I/O spread
I/O activities across 78.8% of their runtime. Therefore, I/O op-
timizations cannot be focused at only certain time instances of
job runtime. We need to work on developing I/O optimizations
that aim to lower I/O contention and improve the overall I/O
performance for most of the duration of application runtime.

H. Relationship between write bytes and memory

Figure 11 shows the write pattern for 3 randomly chosen

jobs. It is seen that the write bytes over time is periodic. This

observation holds true for most I/O intensive jobs in a HPC

storage system. Therefore, we assume that the bursts represent

writing a single file and we add up the write bytes to get the

size of the file. This single file could represent a checkpoint

of the application data.

In the Quartz time-series dataset, 16,795 jobs were recorded.

The total memory in one node in Quartz is 128 GB. We

calculate the size of memory as 128 GB ∗ job node count.

Only 170 jobs wrote in bursts larger than 50% of memory.

16,485 jobs wrote bursts which are smaller than than 15% of

memory, while 16,173 jobs wrote bursts smaller than 5% of

memory.

Observation: More than 95% of applications write in bursts
of size less than 5% memory. Therefore, memory size is not
a good predictor of write burst size as is used in many pre-
vious I/O optimization works [23]. We need better prediction
approaches, such as [12] to predict I/O bursts.
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(a) Cab: Per Day (b) Cab: Per Day of Week (c) Quartz: Per Day (d) Quartz: Per Day of Week

Fig. 8: Contribution of User doing maximum I/O (highest read/write bytes) with respect to total I/O on the system in 2017

on a day and a day of the week’s I/O.

Fig. 9: Percent minutes 11,425 jobs performed any I/O.

Fig. 10: Percent minutes 10,443 jobs performed at least one

write.

Next, we inspect the write burst patterns for all I/O jobs in

Quartz. First, burst size is compared to memory size. For every

job, the I/O duration of the job is divided into 5 categories.

• percent_LessThan1: Percent of the total I/O dura-

tion when the job writes bursts are < 1% memory.

• percent_1To5: %Duration of the total I/O duration

when the job writes bursts are ≥ 1% and < 5% memory.

• percent_5To10: %Duration of the total I/O duration

when the job writes bursts are ≥ 5% and < 10% memory.

• percent_10To50: %Duration of the total I/O dura-

tion when the job writes bursts are ≥ 10% and < 50%

memory.

• percent_50To100: %Duration of the total I/O du-

ration when the job writes bursts are ≥ 50% and ≤ 100%

memory.

Figure 12 shows how much of the job time is associated

with different sizes of write bursts, possibly to checkpoint data.

It is clear from the figure that most of the jobs spend 100%

Fig. 11: Write Bytes written over time by 3 random jobs in

Quartz.

Fig. 12: % I/O duration vs. write burst size as % of memory.

of the I/O minutes in utilizing less than 1% memory, while

there are few jobs which spend all I/O minutes writing bursts

in sizes between 10 – 50% of memory.

Observation: 90% of jobs never write bursts larger than 1%
of memory size. Therefore, we can ideally use more portions
in the memory of an HPC storage system to increase the
prefetching capacity and improve the overall I/O performance.

Fig. 13: Percent I/O duration vs size of write bursts.

We also look at the absolute size of the write bursts and what
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percentage of the job I/O duration is associated with different

sizes of bursts. Similar to Figure 12, Figure 13 shows the

percentage of I/O time during which jobs issue different sizes

of bursts. This is for all jobs which performed I/O.

The categories of data sizes are:

• 0 Bytes
• Less than 1 KB
• Between 1 KB and 1 MB
• Between 1 MB and 1 GB
• Between 1 GB and 1 TB
• More than 1 TB

Our analysis shows that 73% jobs spend greater than 50%

of their I/O time to write data bursts whose size is between

1 KB and 1 MB. There are many jobs which spend more than

90% time writing bursts of size 1 MB to 1 GB.

Observation: Most jobs write burst data in the range of few
kilobytes for the majority of their I/O duration. In the past, I/O
optimizations have focused on large checkpoint data. However,
we observe that there is a significant portion of data written
with small writes. Therefore, I/O optimizations should also be
done for burst write requests having small number of bytes.

I. Demystifying I/O Contention

Inspired from [30], Figure 14a shows the total amount of

data which is transferred at different hours of the day. We

observe that the largest amount of I/O activity is performed

by runs which start at 5AM and 11AM local time.

In Figure 14b, we plot the percentage of I/O time for

applications across different hours of the day. The percentage

of I/O time of an application is plotted as percentage of the

maximum I/O time among all runs which perform similar

I/O behavior to normalize it across applications. However, we

observe that runs started at 5AM and 11AM have the highest

percentage of I/O time due to the high I/O activity during this

time.

(a) Total I/O for every hour through-
out the day.

(b) Percentage of I/O time normal-
ized for similar jobs starting at dif-
ferent hours throughout the day.

Fig. 14: Plotting I/O behavior of application for every hour

throughout the day.

Observation: I/O contention adversely affects the I/O per-
formance for jobs, resulting in similar applications spending
more time doing I/O during the time period when other
applications are also performing considerable I/O. This makes
I/O performance the bottleneck for improving the overall
performance of an HPC application. Therefore, significant
effort is required to handle I/O contentions in the HPC centers.

V. DISCUSSION

The analysis of the server level statistics gave interesting

insights into HPC application I/O behavior. The study though

focused on Livermore Computing resources, the insights can

be extended for other HPC centers. The study is conducted

on a real-world deployment of Lustre file system, which is

one of the most popular parallel file systems used in the top

100 supercomputers [1]. The jobs which are studied in this

paper are representative of other high performance computing

centers, like National Energy Research Scientific Computing

Center (NERSC) [30], and Oak Ridge Leadership Computing

Facility (OLCF) [27].

A. Lessons for HPC admininistrators

• There is an equal distribution of reads and writes per

user in the HPC storage system. Therefore, equal focus

needs to be given on optimizing both reads and writes in

a parallel file system.

• The mean duration of jobs is less than 52 minutes which

suggests that job scheduling and I/O contention strategies

should be developed for shorter duration jobs rather than

jobs which run for many hours.

• A very small number of jobs writing bursts larger than

1% of memory also seems to contradict the conventional

wisdom that defensive I/O is the primary use of HPC file

systems.

• A small number of jobs generated most of the load on the

file system. Focusing on improving the I/O behavior of

jobs which perform maximum I/O will be more beneficial

for overall I/O performance than focusing on jobs which

run for long durations.

• Very few applications perform efficient writes to the file

system. There are applications which write burst sizes

greater than 50% of memory; these may be checkpoints.

• Effort should be made in identifying periods of I/O

contention [32] in different HPC centers and users should

be educated to submit I/O intensive jobs outside of those

times to improve I/O performance of the overall system.

Moreover, job schedulers can be made more intelligent

to detect I/O contention periods.

• There should be optimizations for balancing the metadata

load across the metadata servers which can adversely

impact the I/O performance.

B. Lessons for HPC users

• Users who run write-intensive workloads on parallel

file system need to perform efficient writes. Only 22%

users perform efficient writes, which degrades the I/O

performance of the entire system. The users can get better

I/O performance by performing more write bytes per

write function call.

• A lot of memory remains unused for I/O operations.

Therefore, HPC application developers can improve I/O

performance by prefetching data into memory.
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VI. RELATED WORK

We describe below the chronological order of work which

focus on studying I/O behavior of workloads.

One of the earliest work in analyzing I/O characteristics was

done by Pasquale et al. [28] where they studied the production

workload of San Diego Supercomputing Center’s Cray YMP.

I/O analysis of the I/O intensive applications revealed that I/O

patterns are predictive. Nieuwejaar et al. [24] also studied file

access characteristics on parallel file system in 1996. Hus et

al. [9] in 2001 focused on analyzing I/O behavior from the

application’ perspective, whereas our work emphasizes on the

system side I/O behavior in an application-agnostic manner.

Hsu et al. in 2003 [8] studied the I/O traffic in personal

computers and server workloads. Even on small-scale personal

computers, the analysis of I/O traffic showed similar bursty

patterns as our result on large-scale LLNL supercomputers.

In 2004, Wang et al. [41] analyzed workloads in a LLNL

cluster. However, they focused on studying application traces

to understand the types and sizes of file requests sent by ap-

plication. Thereafter in 2009, Carns et al. did three studies [4],

[15], [3], all targeting applications in very large scale storage

systems at Argonne National Laboratory (ANL). In these

three works, they studied application traces from Darshan I/O

characterization tool [14], how components work together to

provide I/O services to applications in Intrepid system [5],

and techniques to optimize small file accesses in parallel file

systems for very large scale systems. 2009 was one of the

earliest times when petascale I/O workloads were studied, but

all of these studies targetted application traces. The first work

to study failure logs in a large scale storage system was also

done in 2009 by Taerat et al. [39], where they analyzed Blue

Gene/L failure log data at both system and application-levels.

In 2010, Zhao et al. [45] and Shipman et al. [38] studied

the Lustre file system. While, Zhao et al. [45] worked on

a prediction model to accurately predict I/O bandwidth in

Lustre file system, Shipman et al. [38] talked about how the

world’s largest Lustre file system in 2010 was deployed in

the Spider system at Oak Ridge National Laboratory (ORNL).

Oral et al. [26] extended Shipman et al.’s work [38] at ORNL

by discussing the lessons learned from deploying large-scale

parallel file systems in Oak Ridge Leadership Computing

Facility (OLCF).

Kim et al. in 2010 [13] studined I/O needs of more than

4 million HPC jobs. Carns et al. [2] in 2011, studied an

application-biased I/O characterization by performing a two

month study on Interpid. In 2012, Saini et al. [36] studied

the I/O behavior of five NASA applications on Lustre file

system. In 2016, Luu et al. [22] and Gunasekaran, et al. [6]

discussed the application level I/O behavior at production

scale at ANL and ORNL respectively. Using application-level

behavior, Liu et al. [17] in 2016, and Wyatt et al. [43] in

2017 developed machine learning algorithms to coordinate

I/O traffic on large scale shared storage systems. All of these

works focus on managing I/O per-application basis without

considering system-side statistics.

Lim et al. [16] in 2017 studied system-side statistics,

but only considering metadata operations without being

application-agnostic. We have taken this work one step further

by studying both metadata as well as storage server statistics

without being dependent on application characteristics. Lock-

wood et al. [19] built TOKIO in 2018 which uses analysis

results to quantify the degree of I/O contention and the benefit

to users to migrate to burst buffers. The same authors in

2018 provided an extensive analysis [18] from the tools used

in TOKIO. IOMiner [42] was developed by Wang et al.

which provided a unified interface to query I/O statistics and

analyze them. Zhou et al. [46] in 2018 and Yang et al. [44]

in 2019 use the application-level I/O characteristics to build

an in-memory computing framework and an end-to-end I/O

monitoring solution. In 2020, Patel et al. [30], [29], Paul et

al. [33] and Kim et al. [12] work towards demystifying file

access patterns using file level statistics.

VII. CONCLUSION

Improving I/O performance has become the most important

factor in modern I/O bound HPC applications. Therefore,

understanding the I/O behavior of HPC applications is very

important for system administrators, file system developers,

and HPC users. This paper collected Lustre file system server

level statistics from two clusters, Cab and Quartz, at the

Lawrence Livermore National Laboratory, for a period of three

years and analyzed the statistics in an application-agnostic

manner. Our studies have indicated interesting results which

show that due to the increase in popularity of machine learning

jobs, the HPC jobs now have an even distribution of write-

intensive and read-intensive jobs, showing the importance of

giving equal priority in improving file system read and write

performance. Our analysis also led us to believe that there

should be focus on I/O optimizations for jobs which run

for short duration. Also, there should be efforts to educate

HPC users to develop applications which perform efficient

writes. Moreover, the metadata spread across metadata servers

are unbalanced and there should be efforts to balance the

load or migrate metadata operations to less loaded metadata

server. Much effort is also needed to mitigate the effect of I/O

contention that adversely impacts the I/O performance of the

entire system. We believe that our analysis will help all HPC

practitioners to build better file systems and utilize it more

effectively.
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