
Access Patterns and Performance Behaviors of Multi-layer
Supercomputer I/O Subsystems under Production Load

Jean Luca Bez∗
jlbez@lbl.gov

Lawrence Berkeley National Laboratory
Berkeley, California, USA

Ahmad Maroof Karimi∗
karimiahmad@ornl.gov
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Arnab K. Paul∗†
arnabp@goa.bits-pilani.ac.in

Birla Institute of Technology & Science
Oak Ridge National Laboratory

Bing Xie∗
xieb@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Suren Byna
sbyna@lbl.gov

Lawrence Berkeley National Laboratory
Berkeley, California, USA

Philip Carns
carns@mcs.anl.gov

Argonne National Laboratory
Illinois, USA

Sarp Oral
oralhs@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Feiyi Wang
fwang2@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Jesse Hanley
hanleyja@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

ABSTRACT
Scientific computing workloads at HPC facilities have been shift-
ing from traditional numerical simulations to AI/ML applications
for training and inference while processing and producing ever-
increasing amounts of scientific data. To address the growing need
for increased storage capacity, lower access latency, and higher
bandwidth, emerging technologies such as non-volatile memory are
integrated into supercomputer I/O subsystems. With these emerg-
ing trends, we need a better understanding of the multilayer super-
computer I/O systems and ways to use these subsystems efficiently.
In this work, we study the I/O access patterns and performance
characteristics of two representative supercomputer I/O subsystems.
Through an extensive analysis of year-long I/O logs on each system,
we report new observations in I/O reads and writes, unbalanced
use of storage system layers, and new trends in user behaviors at
the HPC I/O middleware stack.

CCS CONCEPTS
• Information systems → Information storage systems; Stor-
age architectures; Computing platforms.

KEYWORDS
Access Patterns, Parallel File Systems, In-System Storage, High-
Performance Computing, Production System

∗Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, and Bing Xie, placed in
alphabetic order, are the lead authors and contributed equally to this work.

†Arnab K. Paul conducted the majority of this work during his postdoctoral re-
search at Oak Ridge National Laboratory, USA. He is presently working as an assistant
professor at BITS Pilani, Goa, India.

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9199-3/22/06.
https://doi.org/10.1145/3502181.3531461

ACM Reference Format:
Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna,
Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley. 2022. Access Patterns
and Performance Behaviors of Multi-layer Supercomputer I/O Subsystems
under Production Load . In Proceedings of the 31st Int’l Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’22), June 27-July
1, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3502181.3531461

1 INTRODUCTION
In High-Performance Computing (HPC) platforms, storage subsys-
tems have evolved rapidly in recent years. In particular, the tradi-
tional HPC storage has emphasized throughput for bulk-synchronous
writes in order to accommodate numerical modeling and simulation
applications that perform checkpointing to periodically store their
state [29, 31]. With increasing investments in using HPC capabili-
ties for artificial intelligence (AI) and machine learning (ML) across
numerous domain sciences (e.g., earth science, astrophysics), I/O
workloads in production HPC environments are becoming more
read-intensive with less predictable access patterns. With the in-
creasing performance gap between the processing speed of com-
puting nodes and the I/O throughput of parallel file systems, new
storage system layers, often built with flash or SSD technologies,
are being integrated into the supercomputer I/O hierarchy.

These changes in I/Oworkloads and storage architectures require
a better understanding of storage subsystem usage in supercom-
puters. In this study, we characterize the I/O workloads and user
behaviors of two such systems: Summit and its storage subsystem
housed at the Oak Ridge Leadership Computing Facility (OLCF),
and Cori and its storage subsystem housed at the National Energy
Research Scientific Computing Center (NERSC). Both of these stor-
age subsystems consist of two layers: a parallel file system (PFS)
layer and an in-system storage layer (discussed in §2.1). For both
storage subsystems, the PFS layers provide the required capacity
and throughput for traditional HPC workloads. In contrast, the in-
system storage layers provide lower I/O access latencies and higher
I/O throughput for emerging AI/ML workloads. These two systems
are representative of the diversity of production HPC systems since

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

43

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1145/3502181.3531461

I/O Analysis
Efforts

Study Objective I/O Logs
A.A.P. S.A.P. P.A. M.S. A.L. S.L. S.D.

[6], [13], [20] ✓ ✓ ✓
[10], [19], [22] ✓ ✓ ✓
[9], [28] ✓ ✓ ✓ ✓
[7] ✓ ✓ ✓ ✓ ✓
[11] ✓ ✓ ✓ ✓ ✓ ✓
Our study ✓ ✓ ✓ ✓

Table 1: Comparison of existing HPC I/O characterization
efforts and our study. We compare the studies with two cri-
teria, including study objectives — application-level access
patterns (A.A.P.), system-level access patterns (S.A.P.), perfor-
mance analysis (P.A.), multilayer I/O subsystems (M.S.), and
the I/O logs in use — application-level logs (A.L), system-level
logs (S.L.), and sampling data (S.D.).

they employ different software and hardware technologies at each
layer. A better understanding of the target systems will lead to
more efficient use of existing multilayer storage and help guide the
design of future storage architectures.

Several studies reported in the literature have characterized HPC
I/O workloads. We summarize these studies in Table 1 based on two
criteria: (1) study objective, including application-level I/O access
patterns (A.A.P.), system-level I/O access patterns (S.A.P.), perfor-
mance analysis (P.A.), and multilayer subsystems (M.S.); and (2)
profiling data, including application-level logs (A.L.), system-level
logs (S.L.), and sampling data (S.D.). A few studies [9, 10, 19, 28]
characterized the behaviors of application I/O, files, and supercom-
puter I/O subsystems from the logs of I/O profiling tools running on
the file system stack, such as metadata servers and storage targets.
For example, TOKIO [11] is an I/O framework that characterizes
the performance behaviors and variations via periodic sampling
with representative HPC I/O benchmarks. Other studies analyzed
application-side data. For instance, logs from Darshan [2], a light-
weight I/O monitoring tool that captures application I/O behavior,
were used to study I/O usage of a single storage layer [6, 7, 13, 20].

In contrast to the previous studies, we analyze two representa-
tive multilayer storage subsystems based on two separate year-long
Darshan log collections. Our investigation focuses on understand-
ing HPC I/O workloads and the usage/performance of separate
storage layers and various I/O interfaces (e.g., MPI-IO, POSIX, and
STDIO) in the HPC I/O middleware stack.

To the best of our knowledge, this study is the first to characterize
multilayer supercomputer I/O subsystems in-depth and is the first to
analyze platform-wide STDIO for usage and performance. A previous
study hinted at the increasing use of STDIO in HPC workloads
[13] because many genomics and biology production applications
rely on I/O functions used to store sequencing information in text
format. As a result, a new capability was added to Darshan to
instrument STDIO functions (e.g., fscanf() and fprintf()). Our
study includes an analysis on the STDIO usage in detail using this
new profiling information.

We publish a month’s worth of Darshan logs collected from both
Summit1 and Cori2 to promote interest and research in the HPC
I/O community. We summarize our primary findings below:

1Summit Dataset: https://doi.ccs.ornl.gov/ui/doi/384, DOI: 10.13139/OLCF/1865904
2Cori Dataset: https://doi.org/10.5281/zenodo.6476501, DOI: 10.5281/zenodo.6476501

A For the two systems we studied, the I/O workloads present
different trends of read and write operations: Summit’s two layers
show opposite dominance on reads and writes, whereas Cori is
dominated by reads, indicating the prevalence of more diverse and
complex application I/O in HPC. We believe this new trend might
be related to the evolution of scientific codes from numerical simu-
lations to AI/ML and the shift from the heavy use of MPI-IO and
POSIX to STDIO. More importantly, this diversity and complexity
demand automatic and dynamic management within I/O middle-
ware libraries or the availability of ad hoc on-demand file systems
studied and tuned for each type of I/O workload.

B End users behave similarly on the target systems. We found
that small data transfers still dominate HPC I/O workloads at both
the file and process levels, despite optimization techniques such as
data aggregation and adaption being available for quite some time.
This finding suggests ways to seamlessly perform the aggregation
at the middleware level (e.g., within higher-level I/O libraries or
MPI-IO) without imposing it on end users.

C Both target systems utilize parallel file systems much more
frequently than the in-system storage layer. Moreover, for both
systems, the overwhelming majority of the files on parallel file
systems could be staged to use the in-system layers for higher I/O
throughput during application execution. This finding suggests a
great need for more convenient data-staging tools to move data
between the two layers with less involvement from end users.

D Although limited information on STDIO has been collected by
Darshan, we observe that for both systems, the usage of STDIO is
noticeably high on the in-system layers and surprisinglywidespread
across diverse science domains.When this observation is considered
in conjunction with the flash and SSD devices used in the in-system
layer and the recent evolution of scientific codes, it suggests the
need for more detailed statistics from I/O monitoring tools, such as
Darshan, to gather information about SSD-oriented access patterns
(e.g., static/dynamic data, rewrites) beyond the traditional uses
of HPC interfaces and parallel file systems. It also suggests that
optimization techniques, such as separating static/dynamic data and
caching rewrites, should be considered by I/O middleware libraries
(e.g. HDF5 [26]) or in-system layer software (e.g. DataWarp [4]).

E With few exceptions, STDIO interfaces consistently deliver
lower performance than do POSIX interfaces across transfer sizes,
suggesting a lack of optimization in STDIO methods. Given our
current relative lack of insight into STDIO usage, we need a deeper
understanding of application needs in this space to identify the
most promising opportunities for optimization. Thus, we suggest
that process-level I/O characterizations for STDIO be added to I/O
monitoring tools such as Darshan.

These findings are relevant to the HPC storage community as
they draw attention to new trends in I/O workloads and HPC I/O
middleware usage, thereby helping identify research gaps and the
need to better characterize evolving user behaviors. We expect our
findings on the new read and write load trends will be interesting
to the system administrators at HPC facilities for the deployment
and operation of storage subsystems. Moreover, our findings on the
increased use of STDIO will be useful for enhancing I/O monitoring
tools and optimizing high-level I/O libraries.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

44

https://doi.ccs.ornl.gov/ui/doi/384
https://doi.org/10.5281/zenodo.6476501

This paper is organized as follows. Section 2 presents the back-
ground information. Section 3 describes the analyses we conduct.
Related work is reviewed in Section 4. We summarize our findings
and conclusions in Section 5.

2 BACKGROUND
This work studies the behaviors of representative multilayer super-
computer I/O subsystems. In this section we present background
information about the two target I/O subsystems of Summit (§2.1.1)
and Cori (§2.1.2) and about the basics of the datasets collected by a
user-level I/O characterization tool, Darshan (§2.2).

2.1 Supercomputer I/O Subsystems
2.1.1 Summit I/O Subsystem at OLCF. Figure 1a presents the
Summit supercomputer and its two-layer I/O subsystem. As one
of the fastest supercomputer in the world [27], Summit is a 148.8-
petaFLOPS IBM-built supercomputer housed at OLCF. It consists
of 4,608 AC922 compute nodes, each node equipped with two IBM
POWER9 CPUs and 6 NVIDIA V100 GPUs. The I/O subsystem
of Summit [17] is composed of two distinct layers: an in-system
layer and a center-wide parallel file system layer. In this work the
in-system layer refers to a collection of organized storage devices
deployed within a supercomputer. In general, the devices in an
in-system layer can be node local, rack local, or system local.

Residing within the supercomputer, the in-system storage layer
of Summit, named SCNL, is built on distributed compute node-local
NVMe devices and provides an aggregate of 7.4 PB raw capacity,
with 26.7 TB/s and 9.7 TB/s as the peak read and write bandwidths,
respectively. The other storage layer of Summit, named Alpine,
is a center-wide parallel file system, built on IBM Spectrum Scale
and utilizing the GPFS parallel file system software technology.
Alpine provides roughly 250 PB of usable storage capacity and 2.5
TB/s peak I/O bandwidth.

Like SCNL in Summit, in-system storage deployments have re-
cently emerged in supercomputing facilities, offering a cost-effective
solution to meet the increasing performance demands in HPC I/O
across science domains. In particular, equipped with software solu-
tions such as Spectral [18] and UnifyFS [15], these in-system storage
deployments provide individual supercomputer jobs an exclusively
accessed filesystem namespace during the job lifetime.

Compared with SCNL, Alpine, the parallel file system layer of
Summit, is a single POSIX namespace and deployed as a GPFS
file system, where each Summit node runs a GPFS client software
stack and provides I/O services for both metadata and data. At the
file system side, Alpine comprises 154 GPFS Network Shared Disk
(NSD) servers managing file data in parallel. To achieve parallel
I/O for a file, GPFS first partitions the file data into a sequence of
equal-size data blocks (GPFS block) and then distributes the block
sequence across an NSD sequence in a round-robin way. The NSD
sequence starts from a randomly chosen NSD server and may span
over the entire server pool by following the system-configured NSD
order. In Alpine, the GPFS block size is configured as 16 MB.

2.1.2 Cori I/O Subsystem at NERSC. Figure 1b depicts Cori and
its two storage layers. Cori is a 30-petaFLOPs Cray XC40 supercom-
puter housed at NERSC. It is composed of 2,388 Intel Xeon Haswell
processor nodes and 9,688 Intel Xeon Phi Knights Landing compute

nodes. Similar to the I/O subsystem of Summit, Cori is connected
to two storage layers: an in-system storage layer, called Cori Burst
Buffer or CBB, and a parallel file system layer, called Cori Scratch.

CBB provides an aggregate of 1.8 PB raw storage capacity and
1.7 TB/s peak I/O bandwidth. Different from the in-system layer
of Summit that consists of node-local NVMe devices (§2.1.1), CBB
is a system-local deployment with the flash devices attached to
the Cray XC service nodes (also called burst buffer nodes) within
Cori. Built on the Cray DataWarp software [4], CBB provides each
Cori job an exclusively accessed file system namespace and storage
system services during the job lifetime. Beyond the storage system
services, CBB is also configured to integrate with Cori’s batch job
scheduler to further improve the usability of this layer. Through
this integration, end users can define directives in their job descrip-
tion files to dictate the configurations (e.g., data striping, storage
capacity) and I/O operations (e.g., staging operations, access mode)
of their allocations on CBB. In addition to operating I/O within
CBB, these directives can be used to arrange the staging operations
between the two storage layers of Cori, enabling end users to stage
directories and files in/out CBB before a job starts and/or after a
job exits without user involvement. Clearly, compared with the
in-system layer of Summit SCNL, CBB offers richer file system ser-
vices and better usability to users. We compare the user behaviors
in these two in-system deployments in §3.2.

The parallel file system layer, Cori Scratch, is a Lustre file system
with 30 PB of usable disk space and 700 GB/s peak I/O bandwidth.
Similar to the GPFS deployment of Summit, in Cori Scratch, each
compute node is configured as a Lustre client that invokes the local
Lustre kernel modules to access two file system services: object
storage client andmetadata client. On the system side, the Lustre file
system is exposed as a single POSIX namespace with five metadata
servers (MDSes) and 248 object storage servers (OSSes). Each MDS
is responsible for a distinct portion of the global namespace, and
each OSS manages one object storage target (OST). Each compute
node is configured to connect to a single MDS and 248 OSSes/OSTs.

Unlike the GPFS data striping policy, Lustre allows users to
customize the data distribution of their files. In particular, a file is
partitioned into a sequence of equal-size data blocks, and each data
block is distributed across a sequence of OSTs in a round-robin
fashion. The block size, the length of the OST sequence, and the
OST start index are the three configurable parameters in Lustre,
called stripe size, stripe count, and starting OST, respectively. On
Cori, the default stripe count is 1, and the stripe size is 1 MB.

2.2 I/O Characterization with Darshan
As a lightweight monitoring tool used in HPC, Darshan is designed
to characterize the I/O behaviors of scientific codes at the applica-
tion level. Loaded automatically as a default module on many of the
U.S. DOE’s large-scale supercomputers, Darshan instruments super-
computer jobs using up to hundreds of thousands of CPUs/GPUs
to monitor, collect, and summarize the statistics of I/O workloads.
Darshan is generally agnostic to the application programming lan-
guage and programming model. In addition, researchers proposed
Darshan eXtended Tracing (DXT) as an extension to provide high-
resolution traces for in-depth analysis of HPC I/O workloads [33].

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

45

Compute Node

NVM/XFS

Compute Node

NVM/XFS

In-System Storage Layer

Mellanox Infiniband EDR Fat-Tree Network

Alpine – Centre-Wide IBM Spectrum Scale (GPFS)

. . . .

NSD I/O Servers

Redundancy Groups

NSD I/O Servers

Redundancy Groups

(a) Summit

Lustre File System

Compute Node Compute Node

Cori Burst Buffer

SSD
. . . .

SSD

Cori Burst Buffer

SSD SSD
I/O

Node

Storage Fabric (Infiniband)

Lustre OSS/OSTs

. . . .
Lustre OSS/OSTs

Cori Scratch – Lustre File System

(b) Cori

Figure 1: I/O subsystem architecture for Summit and Cori. Both systems consist of two storage layers: an in-system layer and a
parallel file system (PFS) layer, where the in-system layers are compute-node local (Summit) and system-local (Cori) and the
PFS layers are IBM Spectrum Scale – GPFS (Summit) and Lustre (Cori) deployments (§2.1).

Application

MPI-IO

POSIX I/O STDIO

Darshan Core Library

header job
record

name
record

MPI-IO
record

POSIX
record

STDIO
record

reduce
compress
write

LUSTRE
LUSTRE
record

Figure 2: Interactions between the application executable,
the Darshan runtime, and the self-describing log.

For the target two systems, DXT is disabled by default. Further-
more, if enabled, it only collects POSIX and MPI-IO operations, not
tracing STDIO calls. Thus, in this study, we build our analysis on
the logs generated by the original Darshan module automatically
loaded by default (discussed in §3.1).

Figure 2 illustrates the Darshan runtime architecture, where the
Darshan core library interacts with an application executable about
the I/O data of the instrumentation modules (e.g., MPI-IO, POSIX).
In the meantime, the library generates, registers, and stores the
I/O data records for each module and writes the compressed data
to a Darshan log when the execution completes. In Figure 2 we
also show the structure of such logs. Darshan log files utilize a self-
describing file format that records the statistics of I/O operations
starting from when a job calls MPI_Init and stopping when the job
calls MPI_Finalize. A single production job may produce multiple
Darshan logs if multiple application instances are executed within
the job. Moreover, each Darshan log includes execution metadata,
the I/O interfaces instrumented (e.g., MPI-IO, POSIX, STDIO), and
the file system in use (e.g., Lustre). In particular, at the job level
Darshan records the job ID, user ID, the number of CPU/GPU cores
in use, and the start and end times of the log. For an I/O interface,
Darshan also records the I/O operations and the I/O metadata of
each module. By merging Darshan records with scheduler logs, the
project ID of the jobs can also be attained.

In Darshan, the records of an instrumentation module are orga-
nized into a set of counters each tracking a type of I/O operation
of the module. In this paper we focus our analysis on the Darshan
counters for three I/O interfaces: MPI-IO, POSIX, and STDIO. For
each interface, the total read and write bytes for a file is given
by Interface_BYTES_READ/WRITTEN, and the total time spent in
read and write is provided in Interface_READ/WRITE_TIME coun-
ters. The total data transfer size for a file in a particular inter-
face is calculated by adding the total read and write byte counters.
The read performance of a file (bytes/second) can be computed by
dividing Interface_BYTES_READ by Interface_READ_TIME. The
write performance can be calculated in a similar manner using
Interface_BYTES_WRITTEN and Interface_WRITE_TIME counters.

Darshan also reports the statistics of read/write requests. To
show the request size per I/O system call, Darshan uses a histogram
of access sizes for MPI-IO and POSIX. This shows the number of
read/write requests in a size range. The values are provided in the
Interface_SIZE_READ/WRITE_SizeRange Darshan counters. The
size ranges are as follows: 0 – 100 bytes, 100 bytes – 1 KB, 1 KB –
10 KB, 10 KB – 100 KB, 100 KB – 1 MB, 1 MB – 4 MB, 4 MB – 10 MB,
10 MB – 100 MB, 100 MB – 1 GB, and greater than 1 GB. These
request size counters are unavailable for the STDIO interface.

The instrumentation of STDIO functions (e.g., fscanf() and
fprintf()) is a relatively new capability in Darshan, developed
in response to the findings on previous platform studies [13] that
confirmed the noticeably increasing use of STDIO across supercom-
puter platforms. In this work we drive the first effort to analyze
platform-wide STDIO instrumentation in depth. Anecdotal case
studies have investigated the use of STDIO routines to process
text data in biology applications [23]. In this work, we observe
STDIO usage becoming more common across applications, science
domains, and supercomputer platforms as new scientific domains
and diverse data sources embrace the use of HPC. We return to this
topic with a detailed discussion in Section 3.3.

3 I/O WORKLOADS ON MULTILAYER
SUPERCOMPUTER I/O SUBSYSTEMS

This section analyzes the user behaviors characterized from the I/O
subsystems of Summit and Cori, representing multilayer supercom-
puter I/O subsystems in production use. As outlined in §2.1, both
systems are connected to two separate storage system layers: the
in-system storage layer, SCNL at Summit and CBB at Cori, and the
parallel file system layer. In the following discussions, we use the
acronyms SCNL and CBB to refer to the two in-system layers of
Summit and Cori, respectively, and use the term PFS to refer to the
parallel file system layer of the two target systems.

Our analysis is built on the I/O characterization data collected
by Darshan (§2.2). Specifically, we focus on understanding the user
behaviors on separate storage system layers (§3.2) and in using
separate I/O interfaces (e.g., POSIX-IO, MPI-IO, STDIO) in the HPC
I/O middleware stack (§3.3). We also discuss the I/O performance of
the target systems across storage system layers and I/O interfaces
(§3.4). Although our observations are limited to the two target sys-
tems, we expect that our conclusions and suggestions are generally
valid and applicable to the deployments and operations of other su-
percomputer I/O subsystems. Furthermore, we expect that they are
valuable for I/Omonitoring tools (e.g., Darshan) and I/Omiddleware
libraries (e.g., HDF5), considering the runtime I/O characterizations
and performance optimizations, respectively.

3.1 Darshan Data on Summit and Cori
As a lightweight I/O characterization tool, Darshan is enabled by
default on both Summit and Cori . When a job starts, the Darshan
runtime is loaded automatically as a default module unless end-
users unload it explicitly. Table 2 summarizes the statistics of the
Darshan data covered in this study. We analyze the Darshan logs
generated in the year 2020 on Summit and the year 2019 on Cori.
During these years the default Darshan module on Summit was
v3.1.7 and on Cori were v3.0 and v3.1.

Year Version Logs Jobs Files Node/hs

Summit 2020 3.1.7 7.7M 281.6K 416M 16.4M

Cori 2019 3.0/3.1 4.3M 749.5K 1,294M 45.5M
Table 2: Summary of Darshan data on both systems. M and K
represent the units for million and thousand, respectively.

To summarize, this study covers ≃7.74 million Darshan logs from
≃ 281.6K jobs on Summit and ≃4.36 million logs from ≃ 749.5K jobs
on Cori, representing 16.4 million and 45.5 million node-hours
on Summit and Cori , respectively. On a target system, each job
generates 1–34, 341 (Summit) and 1–9, 999 (Cori) Darshan logs. Over
the period of this study, ≃ 1, 294.85 million and ≃ 416.91 million
unique files were collected from Summit and Cori, respectively. In
this study we consider a file as a unique file if it can be uniquely
identified by the combination of its path and name in a single
Darshan log. We do not correlate files across Darshan logs and jobs.

Unlike previous studies that centered on the analysis of single-
layer parallel file systems [1, 25, 30, 32, 33], we analyze user behav-
iors and performance on multilayer storage systems. For each layer

of a target system, we analyze the Darshan counters (§2.2) on data
transfer size per file and data request size per process.

In particular, the data transfer size of a file means the aggregate
data size for read or write on a file in the lifetime of a Darshan log.
When Darshan observes that a file is accessed by MPI-IO or POSIX,
we analyze the data transfer size of POSIX since the information
collected at the POSIX level reflects the actual I/O interactions
between applications and the underlying file systems. The reason is
that when end users chooseMPI-IO tomanage data transfer, MPI-IO
will initiate POSIX system calls to access the files managed by the
POSIX-compliant file systems such as the two PFSes discussed in
this work. Moreover, when Darshan observes that a file is managed
by STDIO, we analyze the corresponding data transfer on STDIO. In
summary, we collect ≃ 202.18 PB (read) and ≃ 8, 280.74 PB (write)
of file data transfer on Summit and ≃ 172.31 PB (read) and ≃ 24.3
PB (write) of file data transfer on Cori, respectively.

In addition to file data transfer, we analyze the read/write re-
quests generated by individual processes, where each process per-
forms on a different accelerator (e.g., CPU, GPU). In particular, for
a job executable running on one or more coordinated processes,
we analyze the read/write requests generated per process using the
Darshan counters for the bins of request sizes (discussed in §2.2).
Similar to the analysis of file data transfer, we focus on the I/O
request information collected from POSIX and STDIO.

3.2 User Behaviors on Storage System Layers
This subsection discusses the application-level I/O characteristics
on separate storage system layers, including the analyses of I/O
access patterns (§3.2.1) and the usage of separate I/O layers (§3.2.2).
Our goal is to build an in-depth understanding of the user behaviors
across I/O layers and seek opportunities to improve the end-to-end
I/O performance for users while at the same time maximizing I/O
system utilization in HPC facilities.

3.2.1 I/O access patterns. We first look into the number of files
and the total file data transfer size on the separate storage system
layers. We report the results in Table 3.

To summarize, on both platforms the total number of file accesses
to PFSes is 3.63× (Summit) and 28.87× (Cori) as is observed on SCNL
and CBB. Similarly, for total file data transfer size, we observed
44.63× (read) and 3077.34× (write) of the volume in the PFS when
compared with SCNL for Summit. For Cori, the total transfer size
on the PFS is 28.86× (read) and 6.01× (write) of the CBB. These
numbers suggest that for both of the target systems, a large group
of end users choose PFSes over the in-system layers, although the
latter layers provide much better performance. To better understand
users’ motives behind this choice, we conducted a separate analysis
on the usage of storage layers and the science domains in §3.2.2.

Besides confirming the high popularity of the PFSes, we notice
that on Summit and Cori the I/O loads present different trends.
For Summit , SCNL and PFS are dominated by read and write,
respectively, whereas the entire I/O subsystem of Cori is dominated
by read loads. In particular, for the two I/O layers on Cori, reads
are 3.16× (CBB) and 6.58× (PFS) of the write loads. Relative to
the new trends of utilizing supercomputer capabilities for AI/ML
and edge computing and the rapidly growing use of the other I/O
interfaces (e.g., STDIO) across science domains (discussed in §3.3),

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

47

0

1G
B

10
G

B

10
0G

B

1T
B

1T
B

+

90.0

92.5

95.0

97.5

100.0

C
D

F
 (%

 o
f

Fi
le

s)

Summit Read

PFS
SCNL

0

1G
B

10
G

B

10
0G

B

1T
B

1T
B

+

Summit Write

0

1G
B

10
G

B

10
0G

B

1T
B

1T
B

+

Cori Read

PFS
CBB

0

1G
B

10
G

B

10
0G

B

1T
B

1T
B

+

Cori Write

Data Transfer Size

Figure 3: Cumulative distribution functions (CDF) for the
number of files in a transfer-size bin for read (left) and write
(right) in Summit and Cori’s in-system layer and PFS. We
define data transfer size in §3.1.

Files (Mil.) read (PB) write (PB)

Summit SCNL 279.39 4.43 2.69
PFS 1,015.46 197.75 8278.05

Cori CBB 13.96 13.71 4.34
PFS 402.95 171.64 26.10

Table 3: Number of files and the total data transfer size on
the storage layers of Summit and Cori. For file read/write
using MPI-IO or POSIX, we collect the data transfer size in
POSIX. For file read/write using STDIO, we collect the data
transfer size in STDIO (discussed in §3.1).

this observation indicates that, with the evolution of scientific codes
from simple numerical simulations to AI/ML training and inference,
the HPC I/O workloads are becoming more diverse and complex.

The deeperHPC I/O hierarchy and the emergence of software/hard-
ware technologies (§2.1.1 and §2.1.2) are making it more challenging
for end users to efficiently use the various I/O resources on their
own. Instead, HPC I/O middleware libraries, such as HDF5 [26],
PnetCDF [8], and ADIOS [12], are designed to manage I/O opera-
tions on behalf of users across layers of I/O stack. Unfortunately, so
far, all of the I/O libraries provide only simple heuristics as the de-
faults and allow users to customize the multilayer configurations on
their own. Nevertheless, promisingly, these I/O libraries can collect
the specific I/O access patterns at application runtime [24, 25] and
accordingly do make it possible to address the diverse and complex
HPC I/O patterns automatically and dynamically.

Next, we take a closer look at the characteristics of the I/O work-
loads on the two target systems. Figures 3 and 4 present the cu-
mulative distribution functions (CDFs) of data transfer size per file
and data request size per process (defined in §3.1). In particular, we
observe that for Summit 97% of file reads and 99% of file writes are
below 1 GB on PFS, whereas for SCNL 99% of both file reads and
writes are below 1 GB. Moreover, for the analysis of I/O request
size per process, on the PFS of Summit, both 0–100 and 1K–10K
request-size ranges represent about 45% of read calls. For SCNL
of Summit, the 10K–100K request-size range represents an even
higher number of read and write calls covering 83% and 60%, re-
spectively. Similarly, on Cori, 99.04% of file reads and 97.77% of file
writes in CBB have a total transfer size of < 1 GB. Considering
the PFS, 99.05% of file reads and 90.91% of file writes have a total
transfer size of < 1 GB.

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

0

50

100

C
D

F
 (%

 o
f

C
al

ls
)

Summit Read

PFS
SCNL

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

Summit Write

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

Cori Read

PFS
CBB

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

Cori Write

Request Size

Figure 4: Cumulative distribution functions (CDF) for the
number of requests in a given Darshan bin size for reads (left)
and writes (right) in Summit and Cori’s in-system layer and
the parallel file system.

read files write files

Summit SCNL 0 0
PFS 7232 78

Cori CBB 513 950
PFS 74 10,045

Table 4: Number of read/write files in different layers of the
I/O stack of Summit and Cori where we observed total data
transfer size > 1 TB.

We also highlight large jobs (i.e., number of processes >1,024)
in Figure 5. We observe the same trend in request sizes to the PFS
in both systems, indicating that the initially reported results are
not due to a lot of small jobs but rather a system-level trend also
visible on large-scale runs. We also notice more large requests to
the in-system storage layer. Furthermore, in Summit most of the
total transfers are >1 GB for writes and >100 GB for reads, whereas
in Cori the majority represents a total transfer size of over 1 TB.

In summary, we confirm that on the separate storage system
layers of both Summit and Cori, the HPC I/O workloads are still
dominated by small data transfers on both file and process levels
and for both read and write. Compared with small read and write
operations, large-size I/O can obtain better performance. Moreover,
data aggregation at the application level (e.g., collective I/O in MPI-
IO and I/O adaptation in ADIOS) can accumulate small read/write
requests and communicate with storage systems with larger re-
quests. Thus, data aggregation in I/O middleware libraries is an
effective option to attain good performance.

Although small data transfers dominate, large files indeed occur.
As summarized by Table 4, on Cori, 91.35% of > 1 TB files were
written to PFS, whereas 87.39% of those large accessed files were
instead read from CBB; in contrast, on Summit all files greater
than 1 TB were only on PFS. Again, the data confirms the users’
preference for PFSes.
Recommendation 1 . For the two systems we studied, the overall
I/O workloads present diverse trends on read and write accesses:
the Summit’s two layers show opposite dominance on read and
write, whereas Cori is dominated by read. Relative to the new
trends in scientific applications and HPC I/O middleware stack,
this data indicates the more diverse and complex application I/O.
This diversity and complexity highlights the need for automatic and
dynamic management in I/O middleware libraries or the availability
of ad-hoc on-demand FS best suited and tuned for each workload.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

48

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

0

50

100

C
D

F
 (%

 o
f

C
al

ls
)

Summit Read

PFS
SCNL

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

Summit Write

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

Cori Read

PFS
CBB

0
0_

10
0

10
0_

1K
1K

_1
0K

10
K

_1
00

K
10

0K
_1

M
1M

_4
M

4M
_1

0M
10

M
_1

00
M

10
0M

_1
G

1G
_P

LU
S

Cori Write

Request Size

Figure 5: Cumulative distribution functions (CDFs) for read
(left) and write (right) requests on Summit and Cori’s in-
system layer and the parallel file system. The analysis is
similar to Figure 4 but only for large jobs (i.e., number of
processes > 1, 024).

SCNL/CBB SCNL/CBB + PFS PFS

Summit 0 3.42K 241.5K

Cori 103.46K 35.9K 579.91K
Table 5: Number of jobs on Summit and Cori that access files
exclusively on PFS, SCNL/CBB, or both.

Recommendation 2 . Across storage systems and for both read
andwrite, HPC I/Oworkloads are dominated by small data transfers
at the file level and small I/O requests at the process level. Opti-
mization techniques such as data aggregation and adaptation at the
application level (e.g., at MPI-IO) could be useful in such scenarios
to achieve better performance. Despite those techniques being avail-
able for quite some time, however, we still see a widespread use of
small I/O requests. Thus, we recommend strategies to perform the
aggregation seamlessly at the middleware level without imposing
the task on end users.

3.2.2 Usage of Storage System Layers. Seeking opportunities to
improve the usage of the two in-system layers from the target
systems and, accordingly, achieve higher I/O throughput for HPC
users, we look into the current use of those layers.

Table 5 reports the jobs on Summit and Cori that access files
exclusively on PFS, SCNL/CBB, or both. The results show that
14.38% of the Cori jobs manage files on CBB exclusively, whereas
the Summit jobs rarely make such exclusive accesses on SCNL.
This difference reflects the diverse design choices on the software
technologies of CBB and SCNL (discussed in §2.1). In particular,
DataWarp on CBB manages data staging on directories and files
between CBB and PFS before a job starts and after it exits, allowing
end users seamlessly to access files that reside on CBB. Instead, Uni-
fyFS and Spectral on Summit provide similar file system functions
between SCNL and PFS at application runtime, leaving a minimal
number of exclusive file accesses to SCNL (e.g., temporary files
generated at application runtime) during job executions.

We also categorize file data transfers on SCNL/CBB and PFSes
based on the I/O operations: read-only, read-write, and write-only.
Figures 6a and 6b report the results. When we focus on the files on
PFSes, we surprisingly find that 95.7% (Summit) and 90.1% (Cori) of
the files are either read-only or write-only. This result indicates that
although the read-only andwrite-only files can directly benefit from
the data-staging techniques in DataWarp, UnifyFS, and Spectral,
the overwhelming majority of these files have not yet harnessed

such techniques but instead read/write directly to the PFSes. We
also find that the users of these files are distributed across a wide
range of science domains with no noticeable patterns. In this paper,
we report this issue as an open question we observed, hoping that
this will spark further study on improving the usability of data
staging between the storage layers in HPC platforms.

We also look into the users of the in-system layers on Summit and
Cori. Figure 7a shows the usage of Summit’s SCNL storage layer
by various domains. Darshan data recorded over 3K jobs that have
used the SCNL storage layer and are distributed across 9 science
domains. In particular, the computer science and physics domains
combined cover 60% of the jobs running on the SCNL layer. We
also observe that biology and materials science have used the SCNL
layer exclusively for read-only operations. In contrast, chemistry
jobs have used node-local storage for write-only I/O operations.

For Cori, Figure 7b summarizes the CBB usage by domain, in
log scale. One can observe its widespread usage across 12 domains
and not constrained only to computer science as one might expect.
Physics applications are responsible for most data transfer to this
layer, 71.95%. On the other hand, Earth science andmaterials science
applications have a high CBB read but low write usage. Although
not visible, engineering, nuclear energy, and mathematics are the
domains with the lowest nonzero use.

We conclude that, for both systems, the users of the in-system
layer are distributed in a wide range of science domains, with no
noticeable patterns or motivations for their use of this layer. We
leave further study of this distribution as our future work.
Recommendation 3 . Despite the low usage of the in-system
layers of both target systems, the majority of the files on PFSes can
be staged to use SCNL and CBB, suggesting the great need for more
convenient data-staging tools that can move data between the two
layers with less involvement from the end users.

3.3 User Behaviors of I/O Middleware
This section covers the user behaviors in using the HPC I/O mid-
dleware stack. We start from understanding the usage and access
patterns of POSIX, MPI-IO, and STDIO interfaces on the separate
storage system layers of Summit and Cori.

3.3.1 I/O Access Patterns. Table 6 presents the total number of files
using the three I/O interfaces on the separate storage system layers.
First, we confirm that POSIX is still the most popular I/O API in
HPC with an overall 50.2% and 51.2% of the files on Summit and
Cori being managed by it. Second, we find that MPI-IO is not fa-
vored, especially on Summit. We observe that only ≈10% of the
files on Summit are managed by MPI-IO. Third, we surprisingly
find that the use of STDIO is growing rapidly on both of the target
systems, with an overall 39.8% (Summit) and 14.2% (Cori) of the
files managed by STDIO. When looking further into the usage of
I/O interfaces on separate storage system layers, even more sur-
prisingly we observe on SCNL of Summit that the use of STDIO is
even dominant, with 4.37× the use of POSIX and over 200× the use
of MPI-IO, respectively. For the two storage system layers of Cori,
although the combined use of POSIX and MPI-IO is still dominant
on both of the I/O layers, the use of STDIO is noticeable: 14.6%
of the files on the PFS of Cori is managed by it. These numbers
suggest the increasing use of STDIO in HPC as a new trend.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

49

0 1 2 3 4 5 6 7 8 9
Number of Files ×108

Read-Only

Read-Write

Write-Only

SCNL
PFS

(a) Summit

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Files ×108

Read-Only

Read-Write

Write-Only

CBB
PFS

(b) Cori

Figure 6: Classification of files in Summit and Cori using both POSIX and STDIO interfaces based on their usage of in-system
storage or parallel file system.

100 101 102 103 104

SCNL Data Transfer (TB)

Biology
Chemistry

Computer Science
Earth Science

Engineering
Latice Theory

Materials
Medical Science

Nuclear
Physics

Staff

read
write

(a) Summit

100 101 102 103 104 105

CBB Data Transfer (TB)

Biology
Chemistry

Computer Science
Earth Science

Energy Sciences
Engineering

Fusion
Machine Learning

Materials
Nuclear Energy

Physics
Unknown

Mathematics

read
write

(b) Cori

Figure 7: Usage of the in-system layers across science domains on Summit and Cori. We consider the aggregate file data transfer
using both POSIX and STDIO (discussed in §3.1).

POSIX MPI-IO STDIO
(Mil.) (Mil.) (Mil.)

Summit SCNL 52 0 227
PFS 743 157 404

Cori CBB 13 13 0.65
PFS 313 207 89

Table 6: Files using the STDIO, MPI-IO, and POSIX I/O inter-
faces. For the MPI-IO usage on the SCNL layer on Summit,
we observe only 6 outstanding files using MPI-IO.

To obtain a better understanding of the use of STDIO, we look
into the STDIO-managed files the same way we did for the usage
analysis on PFSes (discussed in §3.2.2): we categorize the STDIO-
managed files based on the I/O operations on read-only, read-write,
andwrite-only. Figure 8 summarizes the total file data transfer using
only STDIO on the separate storage system layers in the target
two systems. Compared with the statistics of the file data transfer
using both POSIX and STDIO presented in Figures 6a and 6b, we
surprisingly find that on both Summit and Cori the files managed
by STDIO show much higher usage on the in-system layers than
the overall statistics. In particular, on Summit the STDIO-managed
files on SCNL show dominance for all of the I/O operations, with
2.66× (read-only), 13.2× (read-write), and 4.8× (write-only) more
use than on PFS. On Cori, although less than half of the files on
SCNL are managed by STDIO, the ratio of STDIO over POSIX on
CBB is 4.2× (read-only), 23.6× (read-write), and 4.39× (write-only)
the ratio on PFS, suggesting that the STDIO users on Cori utilize
the in-system layer much more frequently than they do on PFS. We
conclude that for the STDIO users on both systems, the use and
popularity of the in-system storage systems are noticeably high.

Unfortunately, the detailed process-level information of STDIO
(e.g., the operations such as fread/fwrite, the start/end times-
tamps of the operations) are currently not instrumented by Dar-
shan, leaving us with limited knowledge on the low-level use of
STDIO. Moreover, relative to the in-system layers built with SSD
devices (e.g., NVMe) that present the unique write amplification
issue [5], the characterizations of data requests at the process level
are critical for these SSD-built layers because the performance and
lifespan of such layers can be reduced significantly by random
writes and frequent rewrite (dynamic data). Undoubtedly, careful
management and optimization at the application and/or file system
software levels can significantly alleviate write amplification on
the in-system layer. However, it demands an in-depth understand-
ing of the STDIO usage for the I/O behaviors at the process level
(e.g., sequential/random writes, data compression, static/dynamic
data) and the optimization techniques (e.g., separating static and dy-
namic data, reducing small and randomwrites, caching for rewrites)
adopted by HPC users, I/O middleware libraries, or PFS software.

In adition to analyzing the use of STDIO, we shed some light on
the data transfer size on the separate I/O interfaces across storage
system layers, using the results collected from Summit as an exam-
ple. Figure 9 presents the CDFs of file data transfer with different
I/O interfaces on Summit. In summary, we confirm that following
the trends on file data transfer in HPC presented in Figure 3, the
file data transfer managed by STDIO is also dominated by small
reads and writes for both the target platforms. In particular, on
Summit and Cori, more than 98.7% (SCNL) and 100% (PFS) of the
file data transfer for reads are <1 GB, and more than 82.4% (SCNL)
and 97.6% (PFS) of the file data transfer for writes are <1 GB. As the
analysis on Summit confirms, for STDIO-managed files, small reads
and writes dominate both the in-system layer and PFS. We expect
a similar report from Cori or other supercomputer I/O subsystems.

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

50

0 1 2 3 4 5 6 7 8 9
Number of Files ×108

Read-Only

Read-Write

Write-Only

SCNL
PFS

(a) Summit

0 1 2 3 4 5 6 7 8 9
Number of Files ×104

Read-Only

Read-Write

Write-Only

CBB
PFS

(b) Cori

Figure 8: File classification in Summit and Cori using only STDIO based on their usage of in-system storage or PFS.

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(N

u
m

be
r

of
 F

il
es

)
R

ea
d

POSIX

PFS
SCNL

MPIIO STDIO

0 100MB 1GB 10GB
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(N

u
m

be
r

of
 F

il
es

)
W

ri
te

0 100MB 1GB 10GB 0 100MB 1GB 10GB

Data Transfer SizeData Transfer SizeData Transfer Size

Figure 9: Overview of Summit file operations: cumulative
distribution functions (CDFs) for POSIX, MPI-IO, and STDIO
for file read and write.

Recommendation 4 . For both systems, the usage of STDIO on
the in-system storage layer is surprisingly high, suggesting that
HPC users have been shifting from the dominant use of POSIX and
MPI-IO to the heavy use of STDIO, especially on the SSD-built in-
system layer. Considering a lack of instrumentation on the detailed
process-level counters of STDIO and the unique write amplifica-
tion issue of flash memory and SSDs used in the in-system layer
and its high STDIO usage, we recommend that the counters of
the process-level (e.g., operations on fread/fwrite, I/O request
sizes and timestamps) and SSD-oriented I/O characterizations (e.g.,
rewrite, static/dynamic data) should be considered in I/O moni-
toring tools such as Darshan. Furthermore, we recommend that
I/O optimization techniques (e.g., separating static/dynamic data,
caching rewrites) should be supported in I/O middleware libraries.

3.3.2 Insights on STDIO Usage. Seeking to complement the discus-
sions on the access patterns that employ STDIO to access the data,
we also sought to understand its usage among running applications
by categorizing them based on their science domains. The workload
manager on Summit records the domain information of jobs in their
scheduling logs, but Slurm on Cori does not record this informa-
tion. Thus, we collected the science domain information from the
NERSC NEWT API [16] for the projects that have submitted jobs
in 2019 and combined it with our dataset. On Cori, each project is
associated with only one science domain.

Figures 10a and 10b show the total transfer size of files accessed
via the STDIO interface, grouped by science domain. From 287, 164
jobs reported by Darshan to have used STDIO operations, 258, 510
have a science domain associated with their project, that is, a 90.02%
coverage. It becomes clear that multiple domains are using STDIO
operations in their applications, adding up to 18.76PB of transferred
data (5.94 TB written and 12.82 TB read). When we observe the
combined usage per domain, as illustrated by Figure 10b, we can
see that physics applications have the most intensive STDIO writes

(5.43PB) and reads (12.57PB). On Summit, over 175K jobs have used
the STDIO library to read or write data, representing over 62% of the
jobs recorded by Darshan. Like Cori, Summit also has widespread
use of STDIO across many scientific domains. In Figure 10a, we
depict those domains that have a significant STDIO usage of >1 TB.

Moreover, we look into the file extensions characterized by Dar-
shan. Although end users may change their file extensions in ar-
bitrary ways, these extensions still give us a hint about files and
data managed by STDIO. For example, in Cori we find that ≈ 70%
of the STDIO-managed files present the extensions as .rst, .dat,
.vol, indicating that the files are highly likely human-readable logs
(.rst) and visualization data (.dat, .vol).

We conclude that on both systems, a wide range of domains
actively uses STDIO, which is highly likely for managing logs
and visualization data. In contrast to the initial observation on
the use of STDIO [13], we see increased usage across more domains.
Although the file-extension analysis gives us some insights, the
domain-related analysis does not provide much more information
about STDIO users. To further explain the growing and widespread
use of STDIO, the system-level information about application run-
time and their executables (e.g., the programming language used
on data transfer, the modules loaded at application runtime) should
be included for a more comprehensible study. We leave this study
as our future work.

Recommendation 5 . The STDIO users are distributed across a
wide range of science domains in both systems, suggesting that
diverse areas embrace HPC jobs. Accordingly, application runtime
details and metrics should be considered to comprehend the moti-
vations for using STDIO.

3.4 Performance Analysis
In this section we explore the performance of separate storage
system layers when using different I/O interfaces. Similar to the
preceding sections, we focus on the performance analysis of POSIX
and STDIO (explained in §3.1). Moreover, since Darshan does not
instrument process-level I/O request statistics for STDIO, to make
a fair comparison between I/O interfaces, we limit our analysis
to the performance of file data transfers. To conduct an accurate
performance study, we further focus on the data transfer of single-
shared files, where all processes participate in file read or write
operations. Darshan records these file accesses as a single entry
(recorded with rank -1). This restriction enables us to take into
account concurrent accesses correctly. Otherwise, when a subset
of the processes read/write a file, the accesses of each one will be
recorded as a different entry (the first and last access only), leaving
the synchronization in the process subset uncertain since we do not

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

51

100 101 102 103 104 105 106 107

STDIO Transfer (TB)

Biology
Chemistry

Computer Science
Earth Science

Engineering
Latice Theory

Machine Learning
Materials

Medical Science
Nuclear
Physics

Staff

read
write

(a) Summit

100 101 102 103 104 105 106

STDIO Transfer (TB)

Biology
Chemistry

Computer Science
Earth Science

Energy Sciences
Engineering

Fusion
Machine Learning

Materials
Physics

read
write

(b) Cori

Figure 10: Total transfer size for jobs with STDIO operations grouped by science domain as defined by OLCF and NERSC.

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce
 (

M
B

/s
)

×104 PFS Read

POSIX
STDIO

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

SCNL Read

lib
posix
stdio

(a) Summit Read Performance

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce
 (

M
B

/s
)

×104 PFS Write

POSIX
STDIO

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

SCNL Write

lib
posix
stdio

(b) Summit Write Performance

Figure 11: Read and write performance on Summit for files using the POSIX and STDIO I/O interfaces across PFS and in-system
storage layer (SCNL). Observations are grouped in bins of total data transfer size.

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

0.00

0.25

0.50

0.75

1.00

1.25

P
er

fo
rm

an
ce

 (M
B

/s
)

×104 PFS Read

POSIX
STDIO

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

CBB Read

POSIX
STDIO

(a) Cori Read Performance

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

0

500

1000

1500

2000

P
er

fo
rm

an
ce

 (M
B

/s
)

PFS Write

POSIX
STDIO

10
0M 1G

B

10
G

B

10
0G

B

1T
B

1T
B

+

CBB Write

POSIX
STDIO

(b) Cori Write Performance

Figure 12: Read and write performance on Cori for files using the POSIX and STDIO I/O interfaces across PFS and in-system
storage layer (CBB). Observations are grouped in bins of total data transfer size.

have the exact timestamp of when each operation happened. It is
worth noting that the performance numbers reported in this section
represent the I/O performance received by individual single-shared
files from individual supercomputer jobs. Considering the consis-
tently busy supercomputers and their shared-mode I/O subsystems,
the system-wide aggregate I/O bandwidths are generally higher or
much higher than we report here.

Figures 11a and 11b show the performance measures on the I/O
layers of POSIX and STDIO in MB/s for read and write operations
to shared files, respectively. The performance for the POSIX layer,

in general, is better than for the STDIO layer. I/O read operations
have a more significant performance difference than the writes.
Moreover, the SCNL layer has a higher performance contrast. The
I/O performance of the POSIX layer for files in the range of 100
GB to 1 TB transfer size is about 40× more than for the STDIO
layer. Similarly, for smaller files, those less than 100 GB, the I/O
performance of the POSIX layer is 3× higher. On the SCNL layer,
the median read I/O performance for files between 100 MB and
1 GB is 5× better on the POSIX layer, which increases to 8× for
the files in the range of 10 GB to 100 GB. The I/O performance for

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

52

write operations in Figure 11b for the POSIX layer for files between
100 MB and 1 GB is 1.6× larger than those using STDIO. For files
of other data transfer sizes, the performance is comparable. On
the other hand, for the SCNL layer, the write I/O performance for
STDIO is 1.5× more than POSIX for files in the range of 100 MB
to 1 GB. Since some of the boxplots are missing because of the
absence of files in that size range, we could not compare the write
operations across some data transfer bins. Nevertheless, the plots
in Figures 11a and 11b exhibit the general trend in I/O performance
behavior of the POSIX and STDIO layers on Summit.

We observe similar behavior for Cori. In Figures 12a and 12b,
we summarize the read and write I/O performance (in MB/s) for
the shared files using POSIX and STDIO interfaces in Cori. We
depict the results grouped by the total data transfer size for a given
operation. Despite the natural variability, if we consider the median
performance, 1 GB data transfer sizes in POSIX are 6.78× faster
than STDIO. A similar trend can be seen with 10 GB transfer sizes,
where the median speedup is 2.9×.

Moreover, for write requests, we observed that POSIX achieved
higher performance, 3.67× for 100 MB files and 2.02× for 1 GB files
(with a maximum of 8.47×) than STDIO achieved on the PFS. When
considering the files written to the CBB using POSIX, larger data
transfer sizes gained more performance. In summary, we observed
low performance for applications that used the STDIO interface
when compared with POSIX, for both Summit and Cori. Further-
more, in both systems, there were no large data transfers to shared
files using STDIO except for 5 files on Summit , shown in Figure 11b
for a size range greater than 1 TB (1 TB+).

Recommendation 6 . In contrast to the POSIX performance, al-
though obtaining higher I/O bandwidth on a few transfer sizes,
STDIO consistently delivers lower performance across storage sys-
tem layers and platforms. Given the limited STDIO metrics in Dar-
shan logs, we emphasize that a better understanding of the users’
needs and behaviors on STDIO is critical to explore performance-
improvement opportunities in higher-level I/O libraries.

4 RELATEDWORK
Many studies have analyzed and characterized the I/O behaviors of
HPC applications and systems. We can group existing efforts based
on the I/O logs used to characterize and their objectives. There are
three kinds of I/O logs: application-level logs (e.g., Darshan [2]);
filesystem-level logs (e.g., Lustremonitoring tool logs [14]); and data
sampled from running benchmarks (e.g., IOR [21]). The analysis of
such logs can, in turn, be used to study either application-level or
system-level I/O access patterns, analyze or tune I/O performance,
or study the multilayer I/O usage.

Application-level logs collected by Darshan [2] have been used
in several studies to analyze and characterize the I/O behaviors
of applications and gauge their performance. Isakov et al. [6] use
89,884 Darshan logs from the Argonne Leadership Computing Fa-
cility (ALCF) to build a clustering hierarchy of HPC jobs and a
dashboard allowing a system owner or developer to gain insight
into these clusters. Luu et al. [13] use Darshan I/O logs to provide
a broad view of I/O behaviors on three previous-generation HPC
platforms – Intrepid, Mira, and Edison. They find gaps in the adop-
tion of best practices by scientific application developers to achieve

good I/O performance. Patel et al. [20] study Darshan logs on Cori
to identify reuse patterns of files in workflows. Costa et al. [3] lever-
age Darshan logs to identify similarities across jobs from the same
application and detect potential I/O performance variability.

Other efforts, such as [10], [22], and [19], use server-side log an-
alytics to investigate performance and study system-side file access
characteristics. Liu et al. [10] build AID, which mines application-
specific I/O patterns from existing supercomputer server-side I/O
traffic logs and batch job history jobs. AID also makes suggestions
for I/O-aware scheduling and observations about the predictable
nature of HPC I/O patterns. Patel et al. [19] draw insights into the
temporal, spatial, and correlative behaviors of HPC I/O by analyz-
ing server-side I/O logs. They observe that read I/O dominates the
data transfer size on the file systems while write I/O is generally
bursty. Shantharam et al. [22] analyze statistics from the Lustre file
system server-level collected over three years. They demonstrate a
shift from write-intensive to read-heavy workloads with the preva-
lence of machine learning and point out how metadata servers are
unbalanced, leading to reduced I/O performance.

Lim et al. [9] use daily file system metadata snapshots collected
over 500 days to study the behavioral trends of 1,362 active users
and 380 projects across 35 science domains. This is one of the
first papers that use metadata analysis to provide application and
system-level insights. The study shows the metadata overhead and
the bursty I/O behavior of applications, along with a snapshot of
file access behavior. Wang et al. [28] use both Lustre file system
statistics and application-level profiling data to analyze the stripe
pattern disconnect between system design and actual user/appli-
cation behavior, which suggests the importance of features such
as progressive file layout in Lustre. These two efforts use both
application-level and system-level I/O logs to gauge the application
and system-level I/O access patterns.

Other research efforts that analyze application, system-level file
access patterns, and performance depend on both application-level
and system-level logs. Kim et al. [7] collect multiple system logs
and integrate those with Darshan logs to use various combinations
of regression algorithms to predict the I/O performance of HPC
applications. TOKIO [11] uses I/O performance probes in the form
of sampled data from four I/O benchmark runs along with the
Darshan and LMT logs from the Cori system to provide insights
into the performance variation on production systems and motivate
the need for online analysis.

Our work in this paper is the first analytical study that uses
application-level Darshan logs to provide insights on the usage of
different layers in multilayer I/O subsystems. Our work also shows
the variability in the I/O usage patterns of two supercomputers
with different parallel file systems and in-system storage layers.

5 CONCLUSIONS
To gain an in-depth understanding of the utilization and I/O work-
load trends of multilayer supercomputer I/O subsystems, this paper
analyzed two sets of year-long application-level I/O logs collected
on Summit and Cori. In particular, we studied I/O access patterns,
user behaviors, usage and end-to-end performance of storage layers,
and the different I/O interfaces (e.g., MPI-IO, POSIX, and STDIO). To
the best of our knowledge, this paper is the first in-depth analysis

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

53

of the access patterns and performance characteristics of multilayer
I/O subsystems also considering STDIO.

We summarize the observations and suggestions covering the
design, deployment, and operation of I/O subsystems and the gaps
we need to close in order to attain better performance by enhancing
I/O monitoring tools and translating those metrics into automatic
optimization in high-level I/O libraries, middleware, or parallel file
system software.

Unbalanced use of storage system layers. We observed that
HPC users heavily use the capacity layer PFSes on both Summit and
Cori, although their in-system fast storage layers offer much higher
performance. We observed that the majority of file data transfers
to/from the PFSes can be staged to use the in-system layer. The
under-utilization of the high-performance in-system storage and
the potential for data staging between storage layers show the
critical need for tools and software infrastructures that provide
convenient and transparent data staging for HPC users.

Increasing use of STDIO in HPC applications. We observed
that the use of STDIO is surprisingly high on both Summit and Cori.
Furthermore, the STDIO-managed files also show much higher us-
age of the in-system layers than the other two I/O interfaces. Both
these observations suggest new trends in user behaviors when us-
ing the I/O interfaces. Relative to the unique write amplification
issue in the SSD-based in-system layer, we suggest that Darshan
or other I/O monitoring tools add process-level counters (e.g., se-
quential/random access patterns) and SSD-oriented counters (data
compression, static/dynamic data) for a better understanding on the
optimization opportunities. We further suggest that I/O middleware
libraries (e.g., HDF5) or in-system layer software (e.g., DataWarp)
add features (e.g., separating static and dynamic data, reducing small
and random writes, caching for rewrites) to enable SSD-oriented
performance optimization.

Low I/O bandwidth delivered by STDIO.We observed that on
both Summit and Cori, although STDIO obtains higher bandwidths
on a few transfer sizes, it consistently delivers lower performance
than POSIX does across various transfer sizes, indicating poor
STDIO performance, in general. Recognizing the users’ need for
using STDIO with the integration of applications’ runtime informa-
tion (e.g., the modules loaded at runtime), we suggest optimizing
STDIO via data aggregation and dynamic I/O adaptation within
high-level libraries (e.g., HDF5) and encouraging end users to em-
ploy these libraries.

In summary, these observations seek attention from HPC facili-
ties to develop tools for better utilization of in-system storage layers,
from I/O libraries to understand the I/O workloads to optimize, and
from profiling tool developers to collect relevant information from
new I/O interfaces. We plan our future work in multiple dimensions.
Although the HPC I/O stack offers various tuning parameters, such
as collective buffering at the MPI-IO level, striping settings in using
Lustre, and the number of burst buffer nodes in Cori, understanding
how users take advantage of the tuning parameters may lead to
better default settings or dynamic settings at application runtime.
We plan to explore the current usage of these tuning options by
users. Another focus of this future study will be how many users
tune their I/O in subsequent application executions.

ACKNOWLEDGMENT
Wewould like to thank the anonymous reviewers and our shepherd,
Haiying Xu from HPDC’22, for their invaluable comments that
improved this paper. We are thankful to Alex May, Olga Kuchar,
and Ross Miller from OLCF for their helps in the publication of the
Darshan dataset collected from the Summit supercomputer.

This work used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of En-
ergy under Contract No. DE-AC05-00OR22725. This research was
supported by the Exascale Computing Project (17-SC-20-SC), a col-
laborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. This research
used resources of the National Energy Research Scientific Comput-
ing Center under Contract No. DE-AC02-05CH11231. This work
was supported by the U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research, under Contract
DE-AC02-06CH11357.

REFERENCES
[1] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham,

Rob Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck Detection and Tun-
ing:Towards Connecting the Dots using Interactive Log Analysis. In Proceedings
of 2021 IEEE/ACM 6th International Parallel Data Systems Workshop (PDSW’21).
IEEE, St. Louis, MO, USA, 15–22. https://doi.org/10.1109/PDSW54622.2021.00008

[2] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert
Latham, and Robert Ross. 2011. Understanding and Improving Computational
Science Storage Access through Continuous Characterization. ACM Transactions
on Storage (TOS) 7, 3, Article 8 (Oct. 2011), 26 pages. https://doi.org/10.1145/
2027066.2027068

[3] Emily Costa, Tirthak Patel, Benjamin Schwaller, Jim M. Brandt, and Devesh
Tiwari. 2021. Systematically Inferring I/O Performance Variability by Examining
Repetitive Job Behavior. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri)
(SC ’21). Association for Computing Machinery, New York, NY, USA, Article 33,
15 pages. https://doi.org/10.1145/3458817.3476186

[4] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and
Nicholas J Wright. 2016. Architecture and Design of Cray Datawarp. In Cray
User Group (CUG’16). Cray User Group, London, UK, 11 pages.

[5] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.
2009. Write Amplification Analysis in Flash-Based Solid State Drives. In Proceed-
ings of SYSTOR 2009: The Israeli Experimental Systems Conference (Haifa, Israel)
(SYSTOR ’09). Association for Computing Machinery, New York, NY, USA, Article
10, 9 pages. https://doi.org/10.1145/1534530.1534544

[6] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash,
Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. HPC I/O Through-
put Bottleneck Analysis with Explainable Local Models. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (Atlanta, Georgia) (SC’20). IEEE Press, Atlanta, Georgia, Article 33,
13 pages.

[7] Sunggon Kim, Alex Sim, KeshengWu, Suren Byna, Yongseok Son, and Hyeonsang
Eom. 2020. Towards HPC I/O Performance Prediction through Large-Scale Log
Analysis. In Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing (Stockholm, Sweden) (HPDC ’20). Association
for Computing Machinery, New York, NY, USA, 77–88. https://doi.org/10.1145/
3369583.3392678

[8] Jianwei Li, Wei keng Liao, Alok Choudhary, Rob Ross, Rajeev Thakur, William
Gropp, Rob Latham, Andrew Siegel, B. Gallagher, and Michael Zingale. 2003.
Parallel netCDF: A High-Performance Scientific I/O Interface. In Proceedings of
the 2003 ACM/IEEE Conference on Supercomputing (SC’03). IEEE, Phoenix, AZ,
USA, 39–39. https://doi.org/10.1109/SC.2003.10053

[9] Seung-Hwan Lim, Hyogi Sim, Raghul Gunasekaran, and Sudharshan S. Vazhkudai.
2017. Scientific User Behavior and Data-Sharing Trends in a Petascale File System.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC’17). Association for
Computing Machinery, New York, NY, USA, Article 46, 12 pages. https://doi.
org/10.1145/3126908.3126924

[10] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sudharshan S. Vazhkudai.
2016. Server-Side Log Data Analytics for I/O Workload Characterization and
Coordination on Large Shared Storage Systems. In Proceedings of the International

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

54

https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1145/3458817.3476186
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1145/3369583.3392678
https://doi.org/10.1145/3369583.3392678
https://doi.org/10.1109/SC.2003.10053
https://doi.org/10.1145/3126908.3126924
https://doi.org/10.1145/3126908.3126924

Conference for High Performance Computing, Networking, Storage and Analysis
(Salt Lake City, Utah) (SC’16). IEEE Press, Salt Lake City, Utah, Article 70, 11 pages.

[11] Glenn K. Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip Carns, and
Nicholas J. Wright. 2018. A Year in the Life of a Parallel File System. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press, Dallas, Texas, Article
74, 13 pages. https://doi.org/10.1109/SC.2018.00077

[12] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and Integration for Scientific Codes through the Adaptable IO
System (ADIOS). In Proceedings of the 6th International Workshop on Challenges
of Large Applications in Distributed Environments (Boston, MA, USA) (CLADE’08).
Association for Computing Machinery, New York, NY, USA, 15–24. https://doi.
org/10.1145/1383529.1383533

[13] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multiplatform Study of
I/O Behavior on Petascale Supercomputers. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (Portland,
Oregon, USA) (HPDC’15). Association for Computing Machinery, New York, NY,
USA, 33–44. https://doi.org/10.1145/2749246.2749269

[14] Ross Miller, Jason Hill, David A Dillow, Raghul Gunasekaran, Galen M Shipman,
and Don Maxwell. 2010. Monitoring Tools for Large Scale Systems. In Proceed-
ings of Cray User Group Conference (CUG’10). Cray User Group, Edinburgh, UK,
5 pages.

[15] Adam Moody, Danielle Sikich, Ned Bass, Michael J. Brim, Cameron Stanavige,
Hyogi Sim, Joseph Moore, Tony Hutter, Swen Boehm, Kathryn Mohror, Dmitry
Ivanov, Teng Wang, Craig P. Steffen, and US DOE National Nuclear Security
Administration. 2022. UnifyFS: A Distributed Burst Buffer File System - 0.1.0.
https://github.com/LLNL/UnifyFS

[16] NERSC. 2021. NEWT - A Nice and Easy Web API for HPC. National Energy
Research Scientific Computing Center. https://newt.nersc.gov/api/ Accessed:
Jan. 1, 2022.

[17] Sarp Oral, Sudharshan S. Vazhkudai, Feiyi Wang, Christopher Zimmer, Christo-
pher Brumgard, Jesse Hanley, George Markomanolis, Ross Miller, Dustin Lever-
man, Scott Atchley, and Veronica Vergara Larrea. 2019. End-to-End I/O Portfolio
for the Summit Supercomputing Ecosystem. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC’19). Association for Computing Machinery, New York,
NY, USA, Article 63, 14 pages. https://doi.org/10.1145/3295500.3356157

[18] ORNL. 2022. Spectral Library. Oak Ridge National Laboratory. https://www.olcf.
ornl.gov/spectral-library

[19] Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari. 2019. Re-
visiting I/O Behavior in Large-Scale Storage Systems: The Expected and the
Unexpected. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 65, 13 pages.
https://doi.org/10.1145/3295500.3356183

[20] Tirthak Patel, Suren Byna, Glenn K. Lockwood, Nicholas J. Wright, Philip Carns,
Robert Ross, and Devesh Tiwari. 2020. Uncovering Access, Reuse, and Sharing
Characteristics of I/O-Intensive Files on Large-Scale Production HPC Systems.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies
(FAST’20). USENIX Association, USA, 91–102.

[21] Hongzhang Shan, Katie Antypas, and John Shalf. 2008. Characterizing and Pre-
dicting the I/O Performance of HPCApplications Using a Parameterized Synthetic
Benchmark. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(Austin, Texas) (SC’08). IEEE Press, Austin, Texas, Article 42, 12 pages.

[22] Manu Shantharam, Mahidhar Tatineni, Dongju Choi, and Amitava Majumdar.
2018. Understanding I/O Bottlenecks and Tuning for High Performance I/O on
Large HPC Systems: A Case Study. In Proceedings of the Practice and Experience
on Advanced Research Computing (Pittsburgh, PA, USA) (PEARC’18). Association
for Computing Machinery, New York, NY, USA, Article 54, 6 pages. https:
//doi.org/10.1145/3219104.3219120

[23] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K. Lockwood, and
Nicholas J. Wright. 2016. Modular HPC I/O Characterization with Darshan. In
Proceedings of the 5th Workshop on Extreme-Scale Programming Tools (Salt Lake
City, Utah) (ESPT’16). IEEE Press, Salt Lake City, Utah, 9–17.

[24] Houjun Tang, Suren Byna, NAnders Petersson, andDavidMcCallen. 2021. Tuning
Parallel Data Compression and I/O for Large-scale Earthquake Simulation. In Pro-
ceedings of 2021 IEEE International Conference on Big Data (Big Data’21). IEEE, Or-
lando, FL, USA, 2992–2997. https://doi.org/10.1109/BigData52589.2021.9671876

[25] Houjun Tang, Bing Xie, Suren Byna, Philip Carns, Quincey Koziol, Sudarsun
Kannan, Jay Lofstead, and Sarp Oral. 2021. SCTuner: An Autotuner Addressing
Dynamic I/O Needs on Supercomputer I/O Subsystems. In Proceedings of 2021
IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW’21). IEEE,
St. Louis, MO, USA, 29–34. https://doi.org/10.1109/PDSW54622.2021.00010

[26] The HDF Group. 2022. The HDF5 Library and File Format. The HDF Group.
https://www.hdfgroup.org/HDF5/

[27] TOP500.org. 2022. TOP 500 - November 2021. TOP500.org. Retrieved April 28
2022 from https://www.top500.org/lists/top500/2021/11

[28] Feiyi Wang, Hyogi Sim, Cameron Harr, and Sarp Oral. 2017. Diving into
Petascale Production File Systems through Large Scale Profiling and Analysis.
In Proceedings of the 2nd Joint International Workshop on Parallel Data Stor-
age & Data Intensive Scalable Computing Systems (Denver, Colorado) (PDSW-
DISCS’17). Association for Computing Machinery, New York, NY, USA, 37–42.
https://doi.org/10.1145/3149393.3149399

[29] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and
Norbert Podhorszki. 2012. Characterizing Output Bottlenecks in a Supercomputer.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (Salt Lake City, Utah) (SC’12). IEEE Computer
Society Press, Washington, DC, USA, Article 8, 11 pages.

[30] Bing Xie, Yezhou Huang, Jeffrey S. Chase, Jong Youl Choi, Scott Klasky, Jay
Lofstead, and Sarp Oral. 2017. Predicting Output Performance of a Petas-
cale Supercomputer. In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing (Washington, DC, USA)
(HPDC’17). Association for Computing Machinery, New York, NY, USA, 181–192.
https://doi.org/10.1145/3078597.3078614

[31] Bing Xie, Sarp Oral, Christopher Zimmer, Jong Youl Choi, David Dillow, Scott
Klasky, Jay Lofstead, Norbert Podhorszki, and Jeffrey S. Chase. 2020. Char-
acterizing Output Bottlenecks of a Production Supercomputer: Analysis and
Implications. ACM Transactions on Storage (TOS) 15, 4, Article 26 (2020), 39 pages.

[32] Bing Xie, Zilong Tan, Philip Carns, Jeffrey Chase, Kevin Harms, Gerald Lofstead,
Sarp Oral, Sudharshan Vazhkudai, and Feiyi Wang. 2019. Applying Machine
Learning to Understand Write Performance of Large-scale Parallel Filesystems.
In Proceedings of 2018 IEEE/ACM 4th International Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS’19). IEEE,
Denver, CO, USA, 30–39. https://doi.org/10.1109/PDSW49588.2019.00008

[33] Bing Xie, Houjun Tang, Suren Byna, Jesse Hanley, Quincey Koziol, Tonglin Li, and
Sarp Oral. 2021. Battle of the Defaults: Extracting Performance Characteristics
of HDF5 under Production Load. In Proceedings of 2021 the 21th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGrid’21). IEEE,
Melbourne, Australia, 51–60. https://doi.org/10.1109/CCGrid51090.2021.00015

Session 2: HPC Memory, I/O, and Storage Systems HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

55

https://doi.org/10.1109/SC.2018.00077
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1145/2749246.2749269
https://github.com/LLNL/UnifyFS
https://newt.nersc.gov/api/
https://doi.org/10.1145/3295500.3356157
https://www.olcf.ornl.gov/spectral-library
https://www.olcf.ornl.gov/spectral-library
https://doi.org/10.1145/3295500.3356183
https://doi.org/10.1145/3219104.3219120
https://doi.org/10.1145/3219104.3219120
https://doi.org/10.1109/BigData52589.2021.9671876
https://doi.org/10.1109/PDSW54622.2021.00010
https://www.hdfgroup.org/HDF5/
https://www.top500.org/lists/top500/2021/11
https://doi.org/10.1145/3149393.3149399
https://doi.org/10.1145/3078597.3078614
https://doi.org/10.1109/PDSW49588.2019.00008
https://doi.org/10.1109/CCGrid51090.2021.00015

	Abstract
	1 Introduction
	2 Background
	2.1 Supercomputer I/O Subsystems
	2.2 I/O Characterization with Darshan

	3 I/O Workloads on Multilayer Supercomputer I/O Subsystems
	3.1 Darshan Data on Summit and Cori
	3.2 User Behaviors on Storage System Layers
	3.3 User Behaviors of I/O Middleware
	3.4 Performance Analysis

	4 Related Work
	5 Conclusions
	References

