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ABSTRACT

The aim of cloud computing is to enable users to access resources on demand. The number of users is 
continuously increasing. In order to fulfil their needs, we need more number of physical machines and 
data centers. The increase in the number of physical machines is directly proportional to the consump-
tion of energy. This gives us one of the major challenges; minimization of energy consumption. One of 
the most effective ways to minimize the consumption of energy is the optimal virtual machine placement 
on physical machines. This chapter focuses on finding the solution to the problem of dynamic virtual 
machine placement for the optimized consumption of energy. An energy consumption model is built 
which takes into account the states of physical machines and live migration of virtual machines. On 
top of this, the cloud computing model is built. Unlike centralized approaches towards virtual machine 
placement which result in many unreachable solutions, a decentralized approach is used in this chapter 
which provides a list of virtual machine migrations for their optimal placement.

INTRODUCTION

Cloud computing is a technique for helping users to have access to computing resources on demand 
with very minimal effort in management. It has emerged as a popular computing model in order to 
support processing of large scale data. There are several cloud service providers, for example, Amazon, 
Microsoft, Google, IBM and Yahoo which have built platforms for other enterprises and cloud users 
in order to access the services provided in the cloud.

The areas in which cloud computing is used vary from nuclear physics to geothermal experiments. 
Thus we need data centers to help provide powerful computation resources for these vital areas. A Data 
Center (DC) consists of a large number of Physical Machines (PM) arranged on racks and packed densely 
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in order to increase space utilization. In cloud computing, one of the key concepts for data center man-
agement is virtualization. The most important advantage of virtualization is the capacity to run many 
instances of operating system in a single PM thus making maximum use of the hardware capacities of 
the PM which helps immensely in saving money for energy and hardware costs. These individual in-
stances of operating system are called Virtual Machines (VM). Thus, in cloud computing, users access 
the computing resources of a DC with the help of VMs.

The scheduling of VMs in DCs and VM scheduling on PMs form an important part in cloud com-
puting now more than ever because of the growing number of users. VM scheduling has a massive 
effect on the system’s performance and throughput. Thus, the two types of placement of VMs include 
Virtual Machine Placement (VMP) over DCs and VMP over PMs. The effect that VMP provides is directly 
related to the Quality of Service (QoS) provided by the services in the cloud. The major objective of 
VMP is to make maximum utilization of a data center, thus making use of a lesser number of DCs. This 
helps in achieving more availability and flexibility of DCs, while reducing the costs incurred during 
operating and maintaining hardware.

Anatomy of Cloud Computing

In cloud computing, virtualization is the most important factor in giving dynamic and scalable archi-
tectures. Apart from providing the important aspects of resource sharing and scalability, virtualization 
also contributes to the capability of virtual machine migration between PMs in order to balance the 
load (Jones, 2010).

Figure 1 depicts the key elements in a single node in the environment of cloud computing. The com-
ponent of virtualization in a cloud node is given by the Hypervisor, which is also called as the Virtual 
Machine Monitor (VMM). This layer is responsible for providing the interface of executing many in-
stances of operating systems in one PM. Thus, hypervisors create virtual machine objects which provide 
encapsulation for operating system, applications and configuration. Another important aspect in a cloud 
node known as device emulation is given either in the hypervisor or as a VM. VM management takes 
place both in local PMs as well as in global DCs.

Thus in order to form a DC, the cloud node shown in Figure 1 is multiplied over a network provided 
with the management orchestration over the complete infrastructure:

•	 Hypervisors: This is the initial level of a PM (a single cloud node). It provides the virtual operat-
ing platform, thus managing the execution of guest operating systems, known as VMs. The VMs 
share the virtualized hardware resources of the cloud node. One of the best examples of hypervi-
sors for production environments is the Linux Kernel Virtual Machine (KVM).

•	 Device Emulation: Hypervisors are responsible for providing the platform for sharing virtualized 
physical resources. But in order to achieve complete virtualization, the whole cloud node must 
be virtualized. This is the job of a device emulator. QEMU is the example of a complete package 
combining emulator and hypervisor.

•	 Virtual Networking: As the number of cloud users grow, the number of VMs increases. In order to 
achieve intensified networking system, virtual machines are required to communicate on a virtual-
ized network rather than on a physical level. This reduces the load on the physical infrastructure of 
the system. Virtual switches are also introduced for effective communication among the VMs.
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Cloud Computing Architecture

In the environment of cloud computing, cloud users are dependent on Cloud Service Providers (CSP) 
for fulfilling their needs. Therefore, certain QoS parameters need to be maintained by CSPs which are 
mentioned in the Service Level Agreement (SLA). To achieve this, traditional resource management 

Figure 1. Core elements of cloud node

Figure 2. Cloud computing architecture
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architecture cannot be used. Thus, we have market oriented architecture of cloud computing which is 
shown in Figure 2.

The market oriented architecture of cloud computing has the following components.
Users or brokers acting on behalf of the cloud users, submit their job requests to the cloud data center 

for processing.
The interface between CSP and user is provided by the SLA Resource Allocator. When a user sub-

mits a user request, a decision is made by the Service Request Examiner whether to accept or reject 
the request. It checks the requirements of the QoS parameters. It takes the decision by looking at the 
information of the resource availability provided by the VM Monitor and workload availability provided 
by the Service Request Monitor, to ensure no overloading of resources occur. After consideration of 
these parameters, user requests are assigned to the VMs and a decision is taken regarding the resource 
requirements of the allotted VMs.

Pricing operation takes decisions regarding the prices to be charged from the cloud users. These 
prices can be charged on the basis of the user request, or the time of submission, or availability of cloud 
resources, or simply a fixed rate. This aids in prioritizing the resource allocation process in a cloud DC.

Another important operation is known as Accounting which keeps an account of the actual consump-
tion of resources. This helps in the calculation of the final price to be charged from the cloud user. It 
also helps in making an informed decision by the service examiner by keeping a tab of the historical 
resource usage consumption.

VM Monitor keeps a periodic check on the requirements of various resources and the availability 
of VMs. Dispatcher is accountable for initiating the execution of the user requests on the VMs allotted. 
Service Request Monitor has the important task of maintaining an account of job requests’ execution.

Virtual Machine Placement in Cloud Computing

A two-tiered approach is followed when distributing the VM requests. There are a large number of 
PMs in a DC. A CSP can have many DCs. The first step is to optimally distribute the VM requests over 
DCs. Next, the requests are distributed over PMs.

The virtual machine placement can be of the following two types.

•	 Static virtual machine placement
•	 Dynamic virtual machine placement

Static Virtual Machine Placement

Static VMP is performed when system is in offline mode or during startup of the system. This forms 
the initial VMP in the environment of cloud computing. There isn’t any previous VM mapping. This 
VMP does not take into consideration the VM states, PM states and the rate of VM requests.

Below is the diagrammatic explanation of the centralized model for static virtual machine place-
ment following the two tier approach. First, VM placement over data centers and then the placement 
of requests over PMs in a particular data center are shown.

Figure 3 represents the flow of VM Requests from the users till they are distributed over data centers.
Cloud users use the services provided by the cloud service provider and issue requests. These requests 

are in the form of virtual machine requests since every request will be completed on a virtual machine 
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on top of a physical machine. The VM requests comprise the VM Requests Set. Every data center has 
multiple physical machines and a Data Center Manager to control all the PMs. In order to control all the 
data centers, a Data Center Controller is used.

The data center controller receives the VM requests set. It then requests status information from 
all the data center managers which have the information of their respective data centers. The VM 
requests contain information of the resources (CPU, RAM, Network etc.) needed in order to complete 
the request. The data center managers send information of the available resources to the controller. 
The data center controller optimally distributes VM requests to the data center managers following 
a heuristic algorithm. This approach to distribute VM requests is a Centralized Approach, where the 
decision to schedule requests depends on the central controller.

Figure 4 depicts the static placement of virtual machine requests in physical machines in a single 
data center.

In a data center, there are multiple physical machines on top of which lies the Virtual Machine Moni-
tor [VMM] (Hypervisor). The VMM has the responsibility for virtualization in PMs. The data center 
manager sends requests to the VMMs to provide the status information of all the physical machines. The 
data center manager already has the VM requests’ information. Upon arrival of the status information 
from the VMMs, the DC manager places the VM requests to the individual physical machines in order 
to process them and sends back the response to the cloud users. The placement of VM requests over 
physical machines is also a centralized approach as the decision is taken by a central authority, in this 
case the data center manager.

Dynamic Virtual Machine Placement

If an existing mapping of VMs onto PMs is present, we go for dynamic placement of virtual machines. 
The main goal of dynamic VM placement is to achieve optimum solutions from the already available 
mapping of VMs at minimal cost. The optimality parameters may vary from minimization of the response 

Figure 3. Static virtual machine placement over data centers
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time to the minimization of energy consumption or a combination of multiple parameters. The rate of 
arrival of user requests as well as the states of both VMs and PMs needs to be considered while taking 
a decision. Below is an example of dynamic virtual machine placement.

Figure 5 shows the initial solution (i) for the dynamic VM placement problem. Seven VMs are placed 
over four PMs. PM4 is in off state since no VM is running on it. Assuming that all the PMs have same 
amount of resources, the VMs should be dynamically distributed over different PMs in order to reduce 
energy consumption.

One such solution is shown in Figure 6. In order to reach solution s1 from (i), live migrations need 
to be performed. The list of migrations is: VM5 from PM2 to PM3, migration of VM1 from PM1 to PM2 
and finally migrate VM4 from PM2 to PM1.

Dynamic VMP is explained in detail later in the chapter.

Figure 4. Static virtual machine placement over physical machines

Figure 5. Initial solution i
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Problem Statement

The dynamic virtual machine placement problem has been solved by many researchers. But they haven’t 
considered the live migrations and thus may provide unreachable solutions to the problem. The primary 
objective of the research in this chapter is to model a cloud computing framework such that the dynamic 
virtual placement problem can be solved while providing the live VM migrations to be executed, in order 
to reach the solution.

This can be elaborated as follows:

•	 The motive is to model the dynamic placement problem in such a way that the states of virtual 
machines and physical machines are taken into account. Also the list of executable live VM 
migrations must be provided so that the optimal solution can be obtained.

•	 The problem if solved using centralized evolutionary techniques has a risk of providing un-
reachable solutions. Thus, decentralized approach using congestion game model must be 
used in order to provide the solutions to the dynamic virtual machine placement problem.

•	 In real world scenario, physical machines may act selfishly and not cooperate to achieve an op-
timal solution to the problem. Thus both cooperative and non-cooperative approaches should 
be discussed in order to reach to an optimal solution.

The solution to the dynamic VM placement problem is to be achieved taking into consideration 
the following constraints:

•	 Capacity Constraint: This condition ensures that the total resource requirements of all the VMs 
running on a specific PM should be less than or equal to the total resource availability of that 
particular PM.

•	 Placement Constraint: This constraint checks the criteria that a virtual machine should run on 
only a single physical machine.

•	 SLA Constraint: The cloud model to be incorporated in the real world should follow QoS param-
eters. Thus the service level agreement constraint keeps a tab on the QoS parameters enlisted in 
the agreement and ensures that they are not violated when providing the optimal solution.

Figure 6. Target solution s1
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BACKGROUND

Dynamic VM Placement in Cloud Computing

Dynamic placement of VMs places VMs based on an existing mapping which is in contrast to the 
static placement of VMs which starts with no mapping. Dynamic VM placement aims to reach optimal 
solutions from the existing mapping at minimum cost. This would not shut down or stop the already 
running VMs, thus the placement solution should provide the list of live migrations to be executed in 
order to reach the optimal state from the existing state. The whole process is in contrast to the static 
placement of VMs where VMs can be stopped and restarted which increases the energy consump-
tion and thus degrades the complete system performance. In order to execute dynamic placement 
of VMs, states of physical machines should also be considered.

Dynamic VM Placement problem can be illustrated in Figures 5, 6, and 7. Figure 5 shows the ini-
tial solution (i) for the dynamic VM placement problem. Distribution of seven VMs over four PMs is 
shown. PM4 is in off state since no VM is running on it. Assuming that all the PMs have same amount 
of resources, the VMs should be dynamically distributed over different PMs in order to reduce energy 
consumption. One such solution is shown in Figure 6. The list of migrations has already been given 
in a previous section. We can reach another solution s2 from (i) as shown in Figure 7. Since there isn’t 
much space in PM1 and PM2 for the direct interchange of VM1 and VM3, there needs to be an involve-
ment of PM3. Thus the migrations needed for solution s2 to be reached are: the extra migration of VM3 
from PM2 to PM3, VM1’s migration from PM1 to PM2 and migrating VM3 from PM3 to PM1. But in order 
to reach s2 from (i) will result in more cost than to reach solution s1 from (i) because of the migrations 
involving larger VMs. VM1 and VM3 could have been stopped and restarted in order to facilitate direct 
interchange but that would involve more cost. Also the involvement of PM4 for the interchange of VM1 
and VM3 would result in higher costs since it would then consider the cost of state change for PM4.

Dynamic virtual machine placement problem is NP-hard. There have been existing researches where 
attempts have been made to map the dynamic VM placement problem to bin-packing problem which led 
to the development of evolutionary algorithms like, genetic algorithms or particle swarm optimization 
algorithm. As explained before, many problems arise when VMs have to be placed dynamically. While 
the evolutionary algorithms like genetic algorithms tries to provide optimal solutions to the problem, 
there may be solutions which are unreachable.

Figure 7. Target solution s2
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Figure 8 shows an example of unreachable solution to the dynamic VM placement problem. Figure 
8(a) shows the placement of 4 VMs onto 2 PMs which form the initial solution sol0. The optimal solu-
tion ‘sol’ is shown in Figure 8(b) which brings down the energy consumption by a considerable amount. 
But the solution is unreachable since there is no executable migration route from (a) to (b). In order to 
achieve the solution, a third PM has to be switched on to handle the migrations which will again consume 
more energy. Thus, in case of evolutionary algorithms, judgment has to be made whether the optimal 
solution is reachable or not.

In this chapter, decentralized decision making is used with the help of congestion game theory 
in order to find solutions to the dynamic VM placement problem. In Congestion Games, a group of 
players is modeled to share a resource set. Every player selects a subset of resources from the resource 
set in order to maximize the payoff (Milchtaich, 1996). Here, PMs will be modeled as players which 
will select a subset of VMs from the VM set in order to minimize the consumption of energy. Nash 
Equilibrium is attained after a finite number of iterations. This intelligent algorithm uses the initial 
mapping to obtain the optimum solution and also generates the list of executable VM live migrations 
to reach the optimal state. Thus no solution is unreachable.

Game Theory

Turocy et al. (2001) defines game theory as the formal study of cooperation and conflict. Hotz (2006) 
describes a game as a set of players and their possibilities to play the game by following some rules 
(strategies). The players can be individuals, agents or organizations. The main subject of game theory is 
the situation where the result is mattered not only by the decision of a single player but others as well.

The earliest instance of formal game theoretic analysis is Antoine Cournot’s study of duopoly in 1838. 
In 1921, a formal theory of games was suggested by Emile Borel. This was further studied upon by John 
von Neumann’s theory of parlor games in 1928. The basic terminology and setup of game theory was 
established in Theory of Games and Economic Behavior by von Neumann and Oskar Morgenstern in 
1944. John Nash in 1950 showed that the games with finite number of players always have a point of 

Figure 8. Unreachable solution
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equilibrium where the players choose their best strategy taking into consideration the strategies of other 
players. This equilibrium is known as Nash Equilibrium, named after John Nash. This pivotal point in 
non-cooperative game theory has been used in various fields from sociology, biology to computer science.

There are mainly two types of game scenarios:

•	 Cooperative Game
•	 Non-Cooperative Game

Cooperative Game

Xhafa et al. (2010) defines cooperative game as the game scenario where players form coalitions 
in advance to discuss their actions. Cooperative game theory investigates such coalition games by 
studying how successfully a coalition divides its proceeds.

The applications of cooperative game theory are mainly seen in cases related to political science 
or international relations. In cloud computing, cooperative game theory is used when data centers 
are managed by a single service provider or the providers form a coalition such that the strategies of 
virtual machine placement are known by all the physical machines and respective actions are taken 
to maximize the payoffs of all the SPs.

Non-Cooperative Game

The term non-cooperative implies that this type of game models the process of players who are 
making choices thinking about their own interest.

The non-cooperative game theory relates to realistic cloud computing where the service providers 
do not form coalitions and a decision is made considering the selfish actions of individual providers 
who want to maximize their profit.

Games in Normal Form

The representation of a game in normal form or strategic form is given by Jackson (2011):

•	 The set of players N = {1 . . . . . n}.
•	 Player i has a set of actions ai which are normally referred to as pure strategies.
•	 The set of all pure strategies is denoted by a = (a1 . . . . . an).
•	 Player i has a payoff represented as the function of the action vectors is denoted by ui: A → I R, 

where ui (a) is i’s payoff if a is the strategy taken.

Normal form games are often represented in the form of a table. The most common example is pris-
oner’s dilemma represented in Figure 9.

In prisoner’s dilemma, the number of players is two with each having two pure strategies, where 
ai = {C, D}; C is for cooperate and D is for defect. C indicates the payoff to the row player (player 1) 
as a function of the pair of actions, while D is the payoff to the column player (player 2). The game is 
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explained as follows. Both the players are caught committing a crime and are investigated in different 
cells in a police station. The prosecutor comes to each of them and tells each of them:

If you provide a confession and accept to testify against the other; and if the partner doesn’t confess; you 
will be set free. If both of you accept committing the crime, you will be both sent to jail for two years. If 
you do not accept committing the crime but your partner does, you will be given a sentence of three years 
imprisonment. If none of you confess; only one year punishment will be given due to the lack of evidence.

So the payoff matrix shows the imprisonment time in years. The term cooperate means that the part-
ners cooperate with each other. The term defect means that you are accepting the crime and agreeing to 
testify, and so you are breaking the agreement which you two have.

Nash Equilibrium

If a set of strategies for the players constitute a Nash Equilibrium, it means that none of the players 
can benefit by altering his/her strategy unilaterally.

A strategy ai is a best reply, also known as a best response, of player i to a set of strategies a−i ∈ a−i 
for the other players if

ui(ai, a−i) ≥ ui(a’i, a−i) ; ∀ a’i	 (1)

A profile of strategies a ∈ A is a pure strategy Nash equilibrium if ai is a best reply to ai for each i. 
That is, a is a Nash equilibrium if

ui(ai, a−i) ≥ ui(a’i, a−i) ; ∀ i, a’i	 (2)

A pure strategy Nash equilibrium only states that the action taken by each agent be the best 
against the actual equilibrium actions taken by the other players, and not necessarily against all 
possible actions of the other players.

In prisoner’s dilemma, Nash Equilibrium occurs if both player 1 and 2 cooperate (C). If any of the 
players change his/her strategy, no player can benefit.

Figure 9. A prisoner’s dilemma game
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RELATED WORK

Dynamic VM Placement Problem

Hyser et al. (2008) studied the virtual machine placement scenario by developing an autonomic 
controller which dynamically maps the virtual machines onto the physical machines by following 
the users’ policies. This work also differentiated the static VM placement and dynamic VM placement. 
The algorithms dealing with static VM placement start with no initial mapping. There isn’t any need 
for these algorithms to consider the intermediate steps or the number of moves taken to reach the 
final state. This is in sharp contrast to the algorithms dealing with dynamic VM placement problem 
which must find optimal solutions from an initial mapping.

In 2007, Wood et al. (2007) presented a system called Sandpiper, which was used for automatic 
monitoring and detection of system hotspots. It also provided a new mapping of VMs onto physical 
hosts and initiated the migrations too. Algorithms for hotspot detection focus on signaling a need 
for migration of VMs whenever SLA violations are detected either implicitly or explicitly. In the same 
year, Bobroff et al. (2007) implemented an algorithm based on first-fit approximation to find solu-
tion to the problem of dynamic VM placement having the goal of price minimization. The problem 
was mapped as a bin packing one where the minimum number of PMs to be needed for the VMs 
was calculated and then a remapping was done for VMs onto PMs. The main disadvantage of the 
algorithm was that, it didn’t look for unreachable solutions from the initial mapping.

A two phase process was developed by Hermenier et al. (2009) in order to find solutions to the 
dynamic VM placement problem. The consolidation manager named Entropy found solutions in two 
phases. The first phase finds out a placement keeping in mind the constraints, VM set and the CPU 
requirements. It also provides the likable configuration plan to achieve the desired mapping. The 
second phase tries to improve the result computed in the first phase. It takes into account a refined 
set of constraints and tries to minimize the number of migrations required. However very simple 
parameters are considered in this work and server consolidation is not taken as a factor.

Liao et al (2012) affirmed that dynamic VM placement problem faced three major challenges; multi-
dimensional constraints, the initial state and the intermediary steps. They proposed a system called 
GreenMap which was a VM-based management framework to be able to execute live VM migrations 
considering the resource consumption of servers and energy consumption. Simulated annealing 
based heuristic is used for the optimization problem under the constraint of multi-dimensional re-
source consumption. The two objectives namely, reduction in energy consumption and performance 
degradation are balanced to give the desired output. But the GreenMap system doesn’t address 
heterogeneous physical hosts which invariably form the real life server clusters.

Cooperative Game Theory

Wei et al. (2010) uses cooperative game theory in order to find solution of the QOS constrained 
problem of allocation of resources. Here problem solution is done in 2 steps. First optimal problem 
solution is done by every participant independently without resource multiplexing. Next a mecha-
nism is designed by considering strategies which are multiplexed, of all the players. Existence of Nash 
Equilibrium is shown if resource allocation problem has feasible solutions. This paper creates a useful 
analytical tool for the solution of optimal scheduling problem.
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No consideration for multi-tier architecture of web services and lack of emphasis on stable placement 
of applications are the drawbacks in Wei et al. (2010). These disadvantages are removed by Lee et al. 
(2010) where an evolutionary approach of game theory is designed for stable and adaptive placement 
of applications. This paper implements Nuage which uses an evolutionary game theoretic approach in 
order for stable adaptive deployment of applications. The main goal of this work is to deploy N applica-
tions on M hosts with the goal that applications adapt their locations and allocation of resources is done 
on the basis of resource and workload availability. In this work only CPU time share is considered for 
assignment of resources to each VM.

General colocation game and process colocation game were introduced by Londono et al. (2009) 
in order to distribute resources to infrastructure providers. This work considers a cooperative game 
theoretic framework where the objectives for resource management were to maximize resource 
utilization and minimize total cost of the allocated resources. The work also proves that achieving 
nash equilibrium is NP-complete. The main drawback of this work is that although it provides best 
response computation, it is an expensive framework.

Cooperative VM management for multi-organization environment in cloud computing was done 
by Niyato et al. (2011). Three types of resources are considered for VM management; private cloud, 
on-demand plans and reservation of public CSP. The algorithm works in two steps. First, an optimiza-
tion model is formulated for cooperative organizations and then, an optimal VM allocation problem is 
solved in order to minimize the total cost. This work doesn’t consider the stochastic nature of demand.

Resource allocation in Horizontal Dynamic Cloud Federation Platform (HDCF) environment 
is studied by Hassan et al. (2011).The work presents a cost effective and scalable solution to the 
resource allocation problem using game theory. It studies both cooperative and non-cooperative 
resource allocation games as well as both decentralized and centralized algorithms are presented 
in order to find optimal solutions. The major drawback in this framework is that it doesn’t take into 
consideration the dynamic nature of clouds where hundreds of clouds leave and join the federation 
in a dynamic manner.

Mao et al. (2013) worked upon the problem of cloud service deployment by modeling it as a 
congestion game. Only cost and quality of resources were considered. Every service acts as a player 
which chooses a subset of resources for the maximization of his payoff. It is shown that Nash equi-
librium is reached in polynomial time. This work can be further implemented in seeking solution to 
the placement of multiple cooperative heterogeneous components over many cloud services.

New resource allocation game models (CT-RAG, CS-RAG) were introduced for problem solving in 
cloud computing by Sun et al. (2014). Existence of Nash equilibrium is shown but the work considers 
static game with no representation of fairness of tasks. The problem of allocation of resources for PMs 
in cloud computing based on the uncertainty principle of game theory and coalition formulation 
was studied by Pillai et al. (2014). It is shown that the solution gives higher request satisfaction and 
better resource utilization.

Non-Cooperative Game Theory

Teng et al. (2010) introduced a novel Bayesian Nash Equilibrium allocation algorithm in order to find 
solution to the resource management problem in cloud computing. It analyzes the bid proportion 
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model where users are assigned resources in proportion to their bids. The allocation solutions reach 
Nash equilibrium by gambling in stages which is further simplified by considering that competi-
tion among users is for the same job type consisting of a sequential order of same type of jobs. In 
this model, the shortcoming is that bidders fix the resource price and problems of response delay 
are not addressed. In the same year, Sun et al. in (2010) used continuous double auction and Nash 
equilibrium for the allocation of resources in cloud based on the M/M/1 queueing system. Sun et al. 
(2010) took performance QOS and economic QOS as optimization objectives. The work in Sun et al. 
(2010) greatly improves the Quality of Service in terms of performance and economy. It is fair to both 
resources and users by considering execution cost of ‘pay per use’ services and the average time of 
execution of user jobs.

The problem of service provisioning was studied by Ardagna et al. (2011). IaaS providers host 
applications of SaaS providers such that every SaaS complies with the SLA (revenue and penalty) 
requirements. SaaS providers maximize revenues while cost of resources by IaaS is minimized. IaaS 
providers maximize revenue by providing virtualized resources. The following assumptions for SaaS 
providers are taken in this work.

•	 A single web service application is hosted on a single VM.
•	 Same web service application implemented by many VMs can run in parallel.
•	 All the virtual machines are uniform in terms of CPU and RAM capacity.

IaaS providers offer flat VMs, on-demand VMs and on-spot VMs for which SaaS providers pay. The 
service provisioning problem is formulated and solved using game theory.

The main drawbacks in this work are listed as follows.

•	 Validation of the solution is missing by experiments in real world environment.
•	 The heuristic solutions adopted by IaaS and SaaS providers are not compared.

These drawbacks in 2011 were worked upon by Ardagna et al. (2013).
Kong et al. (2011) worked upon resource allocation among selfish virtual machines by applying 

stochastic approximation methods. It thwarted non-cooperative behavior of the VMs. The proposed 
approach is not implemented in a real world virtualized cloud system. A cooperative game theoretic 
resource splitting solution in cloud computing was formulated by Lu et al. (2012). Here multiple cloud 
providers cooperate with one another in order to form a cloud federation which ensures greater 
profit since provider’s capability to serve for public cloud users is enhanced. A game theoretic policy 
is formed to aid SPs in the decision making process. The work’s performance is not gauged for many 
cloud environments.

The co-scheduling problem addressed by Dhillon et al. (2013) involves a central authority which 
provides solution to constrained optimization problem with an objective function. This works pro-
vides an alternate game theoretic perspective using stable matching theory which reduces the 
Stable Roommates Problem (SRP) to Stable Marriages Problem (SMP). Chen et al. (2014) studied the 
use of game theory for live migration prediction over cloud computing. It is shown that game theory 
improves Gilbert-Elliot model for the prediction of the probability on dirty page.
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PROBLEM FORMULATION

Energy Consumption Model

The major part of energy consumption in a data center is produced by PMs which are running. There 
are other causes of energy consumption such as cooling apparatus but they form a much lesser 
percentage. Here we focus on the energy consumption or PMs which is divided into three sections.

Energy Consumption in Different States

Existing research indicates that energy consumption can be minimized by the adjustment of the 
states of PMs. Here 4 states of a PM are considered:

•	 off - This state consumes no energy.
•	 ready - PM is on but there are no active VMs on it. This state wastes energy consumption if PM is 

kept in this state for a long time. But if PM is switched off, much energy and time will be wasted 
to turn the PM back on to ready state.

•	 idle - This state exists as a result of a trade-off between off and ready states. PMs in this state con-
sume lesser energy than PMs in ready state. Also lesser time and energy will be required to turn a 
PM on from idle state to ready state.

•	 running - This state consumes the maximum energy.

The states and the transitions allowed are shown in Figure 10.
It is observed that energy consumption varies according to load changes in a PM Xu et al. (2010). 

Thus energy consumption of a PM depends on the PM’s utilization.
Thus the energy consumption for a PM can be modeled as:

EC (t) = F E × t + x × L(t)y	 (3)

In equation 3, EC(t) represents the energy consumed in time period t, FE is the energy consumption 
that is fixed per unit time, L(t) is the load of PM in time t, and x and y are the energy adjusting coefficients.

The above equation can be modified for modeling energy consumption of the ith PM in a particular 
state, since the fixed energy consumption of a PM in every state is different.

ECi (t) = F Ei (P M Si) × t + xi × Li (t)
yi	 (4)

Figure 10. States and their transitions
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Equation 4 calculates the energy consumption of PMi in time period t. FEi (PMSi) is the fixed energy 
consumption per unit time of PMi in state PMSi. Li(t) is the load of PMi for time period t, while xi is the 
energy coefficient of the ith PM and yi is the relationship between load and energy of PMi.

Energy Consumption During State Switch

Following rules are maintained while calculating energy consumption during switching of states of 
a PM.

•	 Energy consumption during switching between running and ready states can be ignored.
•	 State switching between off and ready states is slower than switches between idle and ready 

states.
•	 Switching off a PM costs lesser than keeping the PM in idle state.

Thus we use an array ECS(P X 4) to store the energy consumption of state switches since it is fixed 
for a particular state transition for a specific PM. The energy consumption during state switching of 
PMi according to the array ECS can be seen in Figure 11.

Energy Consumption During Live VM Migrations

The consumption of energy during live virtual machine migrations are of three parts;

•	 Energy consumption by the source PM for preparation for migration.
•	 Energy consumption by the target PM for reception and rebuilding of the migrated VM.
•	 Energy consumption by other physical equipment during VM migration.

We maintain three arrays in order for energy consumption during live VM migration.
EVS (P X V) denotes the energy consumption by source PM during migration. EVSij is the energy 

consumed by PMi for moving VMj out.
EVT (P X V) denotes the energy consumption by target PMs for receiving the migrated VMs. Thus, 

EVTij is the energy consumed by PMi for receiving the migrated VMj.
EV X (P X P X V) is a three dimensional array which denotes the energy consumption during migra-

tion. Thus EVXijk is the energy consumed during migration of VMk from PMi to P Mj.

Figure 11. Energy consumption of state switching
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Thus the energy consumption during live VM migrations can be modeled as follows:

EVSij = αi × SZj + βi 	 (5)

EVTkj = αk × SZj + βk 	 (6)

EVXkj = γik × SZj 	 (7)

where, αi, βi, αk, βk and γ
ik are energy adjusting coefficients and SZj is the size of VMj

The Overall Energy Consumption Model

The energy consumption due to the switching of states during the entire migration process can be simpli-
fied. On comparison of the array PMS before and after the whole migration process, an array PMST(4 
X P) can be derived, which represents the state switching of all PMs. Thus,

•	 PMST1i = 1 means PMi need state transition from off to ready.
•	 PMST2i = 1 means PMi need state transition from idle to ready.
•	 PMST3i = 1 means PMi need state transition from ready to idle.
•	 PMST4i = 1 means PMi need state transition from idle to off.

Thus the total energy consumption by state switching of PMs (EPS) for a particular solution (M) 
of the VM placement problem can be calculated as:

EPS M ECS PMSTik ki
ki

P

( ) ( )= ×
==
∑∑
1

4

1

	 (8)

In order to calculate the total energy consumption during live migration, we create 3 arrays by com-
paring the array M before and after migration.

Array VMLM (P X P X V) is created to show the live migrations for all the VMs. Thus, VMLMikj = 
1 means that VMj’s migration from PMi to PMk is needed.

Similarly 2 other arrays VMS(P X V) and VMT(P X V) are created to show the sources of migrations 
and their targets respectively. Thus VMSij = 1 means that VMj is migrated from PMi and VMTkj = 1 
means that VMj is migrated to PMk.

Thus the total energy consumption during migration of VMs (EVM) for a particular solution (M) 
can be calculated as:
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The total energy consumption by all the PMs in different states (EPM) for a particular solution (M) 
can be given as:

EPM M EC ti
i

P

( ) ( )=
=
∑
1

	 (10)

Thus the total energy consumption by the VM placement problem (TEC) from initial solution M’ to 
solution M can be denoted as:

TEC M EPS M EVM M EPM M EPM M( ) ( ) ( ) ( ) ( ')= + + − 	 (11)

where, EPM(M’) is the energy consumption of all PMs under initial solution M’.

System Model

With increasing dependence on Cloud Service Providers (CSP) by consumers for computing needs, 
there has been an enhanced requirement of a specific level of QoS which has to be followed by the 
CSPs. CSPs aim to meet the QoS parameters which are specified in the negotiated Service Level 
Agreement (SLA). Thus, an improved cloud architecture has to be developed which will cater to the 
needs of the consumers as well as the CSPs. The problem model that has been used in this chapter 
is depicted in Figure 12.

The cloud architecture being referred here has many entities.

•	 Users or brokers
•	 SLA Resource Allocator
•	 Service Request Examiner
•	 VM Monitor
•	 Service Request Monitor

VM requirements are given in the form of a vector x cpu y mem z cores.( ) .( ) .( )
� ��� � ���� � �����
+ + , where cpu

� ���
 is the 

CPU requirement in GHz, mem
� ����

 is the memory requirement in GB and cores
� �����

 is the requirement for the 
number of cores. x, y and z are the multiplying factors constraint to x + y + z = 1.

All Physical Machines (PMs) have a PM Controller which accepts the VM Request queue sent from 
the dispatcher. The PM Controllers are as players for the cooperative game theory which take the deci-
sion on the dynamic VM placement problem in order to minimize energy consumption.
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Problem Statement

Figure 12 refers to the system model which is used in order to find the solution to dynamic VM place-
ment problem.

There are n Physical Machines (PMs). Every PM has a state associated with it. The states included 
are: 1 = off, 2 = idle, 3 = ready and 4 = running. Thus we use an array PMS (1 X P) to specify the cur-
rent state of a PM. For every PM, there are 3 resources, namely CPU (GHz), Memory (GB) and number 
of cores. Thus we use an array PMR (3 X n) to specify the amount of resources that every PM has. Thus 
PMRij specifies the amount of resourcei that PMj has. The dynamic VM placement problem in this chapter 
is solved by Cooperative Game Theory where the players are the physical machines. Thus the resource 
status information is shared by all the PMs which aids in the problem solving process.

There are Vi number of VMs in PMi. Let the maximum number of VMs present in one particular 
PM be maxV.

max max( ) ;V V i ni= ≤ ≤1 	 (12)

VM requirements are given in the form of a vector x cpu y mem z cores.( ) .( ) .( )
� ��� � ���� � �����
+ + .

Thus a 3-dimensional array VMR (3 X maxV X n) is created in order to forecast requirement of 
resources for VMs for a certain period of time. Thus VMRijk indicates the requirement of ith resource by 

the jth VM residing in kth PM. For all the V VMs whereV Vi
i

n

=
=
∑
1

, we require I number of performance 

indicators. In order to represent the performance requirements, we create an array VMP (I X V), where 
VMPij is the requirement of the ith performance indicator for the jth VM. This performance indicator 
acts as the SLA indicator.

Figure 12. Proposed system model
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The result of the virtual machine placement problem is stored in a mapping array M (P X V). Mij can 
hold values 0 or 1. The value 1 indicates that jth VM is placed at the ith PM, while the value 0 shows that 
jth VM is not running on the ith PM. We also require an array MP (I X V) which indicates the level of 
performance of all the VMs. MPij means the jth VM is performing at the ith level for a particular solution 
to the VM placement problem.

The VM dynamic placement problem based on energy consumption (EC) (VDPPEC) can be for-
mulated as follows:

VDPPEC TEC M=min ( ) 	 (13)

where,

TEC M EPS M EVM M EPM M EPM M( ) ( ) ( ) ( ) ( ')= + + − 	 (14)

such that,

C PMR
C VMR M r R i P
ri ri

ri

≤
= × = =( ' ; , , ...., ; , , ...., )1 2 1 2

	 (15)

M j Vij
i

P

= =
=
∑ 1 1 2
1

( , ,....., ) 	 (16)

MP VMP i I v Viv iv≥ = =( , ,...., ; , , ....., )1 2 1 2 	 (17)

Equation 13 shows the optimization objective of the VM dynamic placement problem, i.e. minimiza-
tion of energy consumption (EC) for a particular placement solution (M).

The solution is arrived upon satisfying all the three constraints as shown in equations 15, 16 and 
17. Equation 15 is the capacity constraint. M’ is the transposition of the mapping matrix (M). Place-
ment constraint is represented in equation 16 and equation 17 shows that the SLA should be met in VM 
placement solution.

SOLUTION

Cooperative Game Theory

In this section, the algorithm based on congestion game theory for cooperative physical machines has been 
discussed which is used for solving the dynamic VM placement problem. In order for better convenience 
for description of the algorithm, the symbols along with their meanings have been listed in Table 1.
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The algorithm is executed dynamically whenever any SLA constraint is violated. The status of all 
the physical machines is shared by all the players. Thus, it is cooperative game theory.

Algorithm 1 (Figure 13) is the calling module. It takes the initial mapping of V virtual machines 
onto n physical machines as input and produces the best strategy or the optimal mapping with minimum 
energy consumption as the output. Also the migrations needed to reach to the optimal solution are given 
as output.

The algorithm uses the congestion game model which models a resource set being shared by 
a group of players. Here every player selects a subset of resources from the resource set in order to 
maximize his own payoff; here maximizing the payoff means minimizing the energy consumption. 
Here, the physical machines are treated as players which select a subset of VMs in order to minimize 
the total consumption of energy. Thus algorithm 1 calls algorithm 2 for each player in order to reach 
Equilibrium at every step.

Every player, which is each Physical machine, acts as a player and attempts to achieve its own equi-
librium by going through algorithm 2.

Algorithm 2 (Figure 14) finds the best strategy for the ith PM. It takes as input the best strategy for (i-1) 
PMs and gives as output the best strategy of i PMs. First the ith PM looks for the best strategy which will 
consume the least energy. Then all the (i-1) PMs change their strategies accordingly so that equilibrium 

Table 1. List of symbols and their meanings

Symbols Meanings

n Number of physical machines

V Number of virtual machines

𝜌 n Initial mapping of V VMs onto n PMs

𝛿 n Optimal mapping of V VMs onto n PMs after dynamic VM placement

 δα
p−1  A strategy α for PMp-1

𝜗 3 dimensional matrix (n * n * V) showing the live migrations to be executed. Thus, ϑikj = 1 means that VMj’s migration 
from PMi to PMk is needed.

S Strategy matrix to store the collection of strategies for all the PMs. Thus Sij means the jth strategy for ith PM.

payoff i(  δ
α
i

) Total Energy Consumption if strategy α of PMi is taken.

Figure 13. Algorithm 1: Equilibrium of ‘n’ players
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is maintained, that is optimal energy consumption takes place. This algorithm thus produces the best 
strategy for every step for all the n physical machines.

There are n players (Physical Machines) and V virtual machines. So in each step in order to achieve 
Nash Equilibrium for a player the time complexity will be O(nV). The algorithm for finding out the 
equilibrium for a particular step has to be repeated for n players. Thus the time complexity to achieve 
Nash Equilibrium for n players will be O(n2V).

Thus this algorithm obtains the Nash Equilibrium in cooperative congestion game for dynamic VM 
placement at a particular time frame in polynomial time.

Six sets of experiments are performed and the results are compared with results of Best Fit algo-
rithm. Best Fit Algorithm is a centralized algorithm which aims to place VMs into the PM with the least 
available space and with no SLA violations, such that the PMs are fully utilized. The steps involved in 
best fit procedure are defined in Algorithm 3 (Figure 15). The results are shown later.

Non-Cooperative Game Theory

In this section, the algorithm based on non-cooperative theory which has been used to solve the 
problem of dynamic virtual machine placement has been discussed. The symbols used in the algo-
rithm have been listed in Table 2.

Algorithm 4 (Figure 16) shows the procedure for a PM to select its best placement every time such 
that in every iteration, the energy consumption by that physical machine is lesser than the energy 
consumption in the previous iteration for that particular PM. Thus, all the PMs act selfishly in order 
to optimally dynamically place VMs onto PMs such that energy consumption is minimized.

Practically speaking, in order to compute Nash Equilibrium, some coordination must be present 
among the players; in this case the physical machines. Thus, the non-cooperative procedure shown in 
algorithm 5 is devised where players (PMs) are synchronized in such a manner that their individual 
placement strategies are updated in a round-robin fashion.

Figure 14. Algorithm 2: Nash_Equilibrium(p)
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Figure 15. Algorithm 3: Best Fit Algorithm

Table 2. List of symbols and their meanings

Symbols Meanings 

i Physical machine number

itr Iteration number

energyi
(itr) Total energy of ith PM computed at iteration number itr

𝜏 The accepted tolerance

𝛿p-1𝛼
 A strategy α for PMp-1

en Tolerance at iteration number itr.

energy energy
i
itr

i
itr

i

n
( ) ( )−

=

−∑ 1

1

command The instruction given to the neighbor PM. It has two values, CEASE and CARRY_ON.

SEND((a, itr, command), i) Send message (a, itr, command) to PMi

RECEIVE((a, itr, command), i) Receive message (a, itr, command) from PMi

VMLM_TEMP Temporary live VM migration matrix.

M_TEMP Temporary VM placement matrix.

Figure 16. Algorithm 4: Best_Placement(i)
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Algorithm 5 (Figure 17) is executed for all the physical machines periodically or whenever SLA 
violations are made. When the execution of the algorithm is over, the players will have reached Nash 
Equilibrium, thus the strategies remain the same in equilibrium.

In this algorithm, the tolerance is maintained at a very small value, such that in every iteration, the 
energy consumption is reduced till a point that very small savings in energy is seen in consecutive 
iterations. This is the point where the algorithm exits. In order to facilitate the coordination among 
all the physical machines, messages are sent to the next physical machine. The message consists of 
three arguments; the energy savings made in that particular iteration, the iteration number and the 
command. If the command is CARRY_ON, it means that equilibrium has not been reached and best 
placement strategy needs to be computed again. On the other hand, the command CEASE instructs 
the next physical machine that it can exit the algorithm as equilibrium is reached. In every itera-
tion, the first PM checks the tolerance for the last iteration and accordingly initiates the command 
sequence for all the PMs.

SIMULATION AND RESULTS

The simulation has been done using an in house simulation using Java.

Figure 17. Algorithm 5: Non-Cooperative Algorithm



160

Dynamic Virtual Machine Placement in Cloud Computing
﻿

Simulation Parameters

The series of experiments have been performed considering the capacities of physical machines as 
each having 12.8 GHz of processor speed, 8 GB memory and is octa-cored. The capacities of VMs are 
chosen randomly from a fixed set of values.

The values of xi and yi are determined via function fitting graph related to CPU utilization and are 
fixed at 61.06 and 2 respectively. Thus Equation 4 which calculates the consumption of energy by 
PMs in different states can be written as:

ECi (t) = F Ei (P M Si) × t + 61.06 × Li (t)
2	 (18)

It is considered in the experiments that all the PMs are homogeneous in nature. Thus the param-
eters’ values are same for all the PMs.

In order to calculate the consumption of energy by every PM, we use the energy consumption 
model described in chapter 2. The values for the parameters are shown in Table 3. To determine the 
energy consumption during live VM migration, the parameters have their values fixed; α i  = 0.256, 
βi  = 10.0825, αk  = 0.256, βk  = 10.0825 and γik  = 0.5.

Experimental Results

The Convergence of Nash Equilibrium

In order to prove that the non-cooperative algorithm converges to the nash equilibrium, we have per-
formed experiments; the results of which is shown in Figure 18 and Table 4. A system of 20 PMs and 
50 VMs is considered.

It is observed that the value of en converges to zero as the number of iterations increases. This proves 
that we are achieving Nash Equilibrium in polynomial time. From this experiment, for further simula-
tions, we fix the value of τ as 0.003.

Figure 19 shows the variation of the number of iterations needed to achieve a value for sum_en-
ergy less than τ (0.003) as the number of PMs increase. For this simulation, the number of VMs has 
been fixed at 50.

Next, we perform a set of experiments keeping the number of PMs available fixed at 40 and increasing 
the number of VMs from 10 to 150. All the results obtained from the non-cooperative game theoretic 
algorithm are compared with the results obtained from cooperative game theoretic algorithm and best 
fit algorithm. The impact of selfishness is seen in the results.

Table 3. Values for the energy consumption parameters

States Running Ready Idle Off

Running FEi(running) = 32.2708 - - -

Ready - FEi(running) = 32.2708 ECSi3 = 3.5 -

Idle - ECSi2 = 7.5 FEi(idle) = 0 ECSi4 = 5.5

Off - ECSi1 = 0 - FEi(off) = 0
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Figure 18. en vs No. of Iterations

Table 4. sum energy (en) vs No. of Iterations (for 20 PMs, 50 VMs)

Sum Energy (en) No. of Iterations

10.09 10

2.84 20

0.76 30

0.043 40

0.0027 50

Figure 19. Convergence of non-cooperative algorithm (until en ≤  0.003)
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The number of PMs used in order to dynamically place the VMs are projected in Figure 20. The 
results showing the energy consumption and execution time are shown in Figures 21 and 22 respectively.

From the results, it is observed that number of PMs used and the energy consumption for the non-
cooperative game theoretic algorithm are similar to the results obtained from the cooperative game 
theoretic approach. Both these algorithms give better results than the best fit approach. But due to the 
non-cooperative nature of the players, that is PMs, the execution time increases for the non-cooperative 
approach. But the increase in execution time is not drastic so as to discard the algorithm. For minimiza-
tion of the energy consumption, a slight increase in the execution time can be afforded.

Figure 20. No. of PMs Used vs No. of VMs (Available PMs Fixed at 40)

Figure 21. Energy Consumption vs No. of VMs (Available PMs Fixed at 40)
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The next set of experiments are performed for a number of VMs fixed at 100 while the number of 
available PMs are increased from 35 to 95 in equal intervals of 15. The results of the non-cooperative 
approach along with the comparison with the cooperative procedure and the best fit algorithm are shown 
in Figures 23, 24 and 25.

Here too, the results obtained from the non-cooperative algorithm are similar to the results of coop-
erative approach which are better than the best fit procedure’s results. But the minimization of energy 
consumption via non-cooperative approach comes at a cost of increased execution time.

Figure 22. Execution Time vs No. of VMs (Available PMs Fixed at 40)

Figure 23. No. of PMs used vs No. of Available PMs (VMs Fixed at 100)
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Thus the impact of the non-cooperative nature of physical machines affects the execution time to 
achieve optimal placement of VMs onto PMs while minimizing the energy consumption.

FUTURE RESEARCH DIRECTIONS

While conducting the simulations, fixed values are taken for calculating the energy consumption of 
physical machines. Also it is assumed that all the physical machines are homogeneous in nature. For 

Figure 24. Energy consumption vs No. of available PMs (VMs Fixed at 100)

Figure 25. Execution time vs No. of available PMs (VMs Fixed at 100)
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further research, the values of the parameters for calculation of energy consumption should be com-
puted dynamically. Also heterogeneous environment should be considered. In addition to these, energy 
consumption due to other factors like cooling equipment which have not been considered in this work 
should be taken into account in future.

CONCLUSION

In this chapter, the problem of dynamic virtual machine placement has been addressed. After a deep 
analysis of the already existing research work in this area, a decentralized approach using game theory 
has been proposed here in order to optimize the consumption of energy. First, an energy consump-
tion model is built in view of the complicated process of dynamic placement of virtual machines. 
Here, three factors have been considered while building the model, namely energy consumption of 
physical machines in different states, consumption of energy during the state transition of physical 
machines and during live virtual machine migrations. In this work, both cooperative and selfish nature 
of physical machines has been considered. Cooperative game theory using the concept of congestion 
game and non-cooperative game theoretic approaches have been used to propose new algorithms 
to optimally place virtual machines onto physical machines dynamically. For both the approaches, it 
is seen that Nash equilibrium is achieved in polynomial time. Both the algorithms guarantee a list of 
live virtual machine migrations to achieve the target solution from the initial mapping. Simulations 
are done and the experimental results are compared with the best fit approach. Both cooperative and 
non-cooperative algorithms help in minimizing the energy consumption, though the non-cooperative 
game theoretic approach takes a longer execution time to give the optimal result.
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KEY TERMS AND DEFINITIONS

Cloud Computing: Cloud computing is a technique for helping users to have access to computing 
resources on demand with very minimal effort in management.

Cooperative Game Theory: Cooperative game as the game scenario where players form coalitions 
in advance to discuss their actions.

Game Theory: Game theory is the formal study of cooperation and conflict. A game is described as 
a set of players and their possibilities to play the game by following some rules (strategies).

Non-Cooperative Game Theory: This type of game models the process of players who are making 
choices thinking about their own interest.

Virtualization: Virtualization is the capacity to run many instances of operating system in a single 
PM thus making maximum use of the hardware capacities of the physical machine which helps immensely 
in saving money for energy and hardware costs.

Virtual Machines: These individual instances of operating system are called Virtual Machines (VM).
Virtual Machine Placement: The scheduling of virtual machines in data centers and virtual machine 

scheduling on physical machines.
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