
Improving I/O Performance of HPC Applications
Using Intra-Job Scheduling

Arnab K. Paul∗, Olaf Faaland†, Adam Moody†, Elsa Gonsiorowski†,
Kathryn Mohror†, Ali R. Butt∗

∗Virginia Tech, †Lawrence Livermore National Laboratory
{akpaul, butta}@vt.edu, {faaland1, moody20, gonsiorowski1, mohror1}@llnl.gov

I. INTRODUCTION

The current trend for high performance computing (HPC)
systems is that processor performance improves at a rate
of 20% per year, while disk access time improves by only
10% every year [2]. As a result, massively parallel HPC
applications can suffer from imbalance in computation and
I/O performance, with I/O operations becoming a limiting
factor in application efficiency [3]. To mitigate this problem,
much effort has been dedicated to implementing high perfor-
mance parallel file systems to support the I/O needs of HPC
applications. The Lustre file system [6] is one of the most
widely-used parallel file systems, supporting ∼60% of the top
supercomputers in the latest Top-500 list (June, 2019) [1].

A lot of promising approaches have been made to improve
I/O behavior of HPC applications. There are recent works on
improving I/O scheduling for burst buffer systems [4]. Also,
with the increase in machine learning, models are being built
to predict runtime I/O behavior of HPC applications using the
job scripts [7].

An analysis of the I/O patterns for HPC applications has
shown that they have bursty write patterns. Also, the I/O
behavior of such applications is predictive and can be mod-
eled. Our work makes use of such predictive nature of the
I/O requests of HPC applications. We have data for per-
minute I/O statistics for over 1.4 million jobs that ran on
Quartz cluster in Lawrence Livermore National Laboratory
(LLNL). All of these jobs can be modeled using time-series
prediction techniques. In this preliminary study, we focus on
write requests. Once jobs are modeled and the runtime write
behavior predicted, the requests can be manipulated to lower
HPC job I/O contention, which will increase the overall I/O
performance.

II. METHODOLOGY

The dataset for the job-statistics is divided into training and
validation data. Jobs from the traning dataset are modeled.
The validation dataset serves two purposes. First, the modeling
of job write pattern is verified using the validation dataset.
Second, the validation dataset serves as the test case for
reducing I/O contention. Whenever a new job arrives at the
job scheduler, the scheduler will look at the other jobs that are
currently running on the system. The other jobs have already
been modeled and the pattern of those jobs can be predicted
based on the model. After the initial few write requests of

the newly submitted job, that job can be matched to a model
of another job which was previously run on the system, thus
getting access to its future write requests. The write requests
of the present running job can then be scheduled in such a
way that the overall I/O contention of the system decreases.
This will ensure increase in the I/O performance of the system.
The machine learning model will continuously evolve based
on the results of the jobs from the validation dataset.

III. PRELIMINARY RESULTS AND NEXT STEPS

We have built a simulator for the Lustre file system to
accurately model the system in Quartz cluster at LLNL. The
simulator has four key components closely mirroring those
of Lustre’s OST, OSS, MDT, and MDS, which implement
the various Lustre operations and enable us to collect data
about the system behavior. All the network components in
the simulator are modeled using Network Simulator (NS-
3) [5]. This simulator will measure the I/O performance of
the system. The initial results from the time-series modeling
have been promising. The jobs that have been validated show
an accuracy of 95% in predicting job write bursts.

The next steps will be to build a system that reduces
I/O contention by matching the jobs with their model and
scheduling their write requests. We need to measure the I/O
performance of the jobs as well as the overall performance of
the system.

REFERENCES

[1] T. 500. Top 500 list - june 2019. https://www.top500.org/lists/2019/06/.
Accessed: November 2 2019.

[2] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[3] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock.
I/o performance challenges at leadership scale. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, pages 1–12. IEEE, 2009.

[4] W. Liang, Y. Chen, J. Liu, and H. An. Contention-aware resource schedul-
ing for burst buffer systems. In Proceedings of the 47th International
Conference on Parallel Processing Companion, page 32. ACM, 2018.

[5] Nsnam. Network simulator - ns3. https://www.nsnam.org. Accessed:
November 2 2019.

[6] OpenSFS and EOFS. Lustre file system. http://lustre.org/. Accessed:
November 2 2019.

[7] M. R. Wyatt II, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and
M. Taufer. Prionn: Predicting runtime and io using neural networks. In
Proceedings of the 47th International Conference on Parallel Processing,
page 46. ACM, 2018.


