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Abstract—Emerging workloads such as artificial intelligence,
big data analytics and complex multi-step workflows alongside
future exascale applications are anticipated future HPC work-
loads, which will result in a more diverse I/O system workload
and even less predictable I/O behavior and access patterns. Along
with the ever increasing gap between the compute and storage
performance capabilities, the in-depth understanding of extreme-
scale I/O behavior and the I/O performance modeling and pre-
diction are essential tools of the large-scale I/O evaluation process
for addressing the needs of extreme-scale hybrid workloads. In
this survey article, we focus on the state-of-the-art of the I/O
behavior and performance analysis process for HPC systems in
a 5-year time window and identify future research challenges.
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HPC, Performance Evaluation, I/O Characterization

I. INTRODUCTION

High Performance Computing (HPC) applications are evolv-
ing to include not only traditional scale-up modeling and sim-
ulation bulk-synchronous workloads but also scale-out work-
loads like artificial intelligence (AI), data analytics methods,
deep learning, big data and complex multi-step workflows [1].
Exascale workflows are projected to include multiple different
components from both scale-up and scale-out communities
operating together to drive scientific discovery and innovation.

With the often conflicting design choices between optimiz-
ing for write-intensive vs. read-intensive workloads, having
flexible I/O systems will be crucial to support these emerg-
ing hybrid workloads. Another performance aspect is the
intensifying complexity of parallel file and storage systems
in large-scale cluster environments. Storage system designs
are advancing beyond the traditional two-tiered file system
and archive model by introducing new tiers of temporary,
fast storage close to the computing resources with distinctly
different performance characteristics. The changing landscape
of emerging hybrid HPC workloads along with the ever
increasing gap between the compute and storage performance
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capabilities reinforce the need for an in-depth understanding
of extreme-scale I/O and for rethinking existing data storage
and management evaluation techniques and strategies.

In this article, we present a holistic survey of the current
research on large-scale I/O evaluation and characterization
techniques in the context of HPC systems. Our contributions
are two-fold. First, we provide a detailed taxonomy of I/O
performance evaluation strategies together with a snapshot of
the current I/O analysis, modeling, and prediction research.
We believe this knowledge is useful to the whole scientific
community, as applications often observe poor performance
due to bottlenecks in the parallel I/O system. Second, we
aim to identify current and future research challenges with
regard to the emerging exascale computing systems and more
complex hybrid HPC workloads. We focus on a 5-year time
window from 2015 to 2020. By exploring the most recent
publications of the last five years, we aim at answering the
following questions:

• What are the main techniques used by HPC researchers
for characterizing and analyzing the I/O behavior?

• What effects do emerging workloads have on current
research strategies?

• What are the key I/O research topics in the evaluation of
emerging HPC workloads at large-scale?

II. BACKGROUND AND RELATED WORK

Proportional to the scale increases in HPC systems,
many scientific applications are becoming increasingly data-
intensive, and parallel I/O has become one of the dominant
factors impacting large-scale application performance.
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Fig. 1: HPC system with a center-wide parallel file system.



Figure 1 presents an overview of a typical HPC compute
cluster backed by a center-wide parallel file system. The
compute nodes run the client applications and are typically
connected over a high-performance network fabric such as In-
finiBand. I/O nodes handle requests forwarded by the scientific
applications, potentially integrate a tier of solid-state devices to
absorb the burst of random or high volume operations, so that
transfers to/from the staging area from/to the traditional paral-
lel file system can be done more efficiently. The connection to
the storage cluster is often times through a secondary, slower
fabric such as 10GB Ethernet. The storage cluster hosts the
server-side of the parallel file system and usually comprises
of metadata servers, storage servers, and storage devices.

Application

High-level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O and Storage Hardware

I/O Middleware
organizes accesses from 
many processes, especially 
those using collective I/O.

MPI-IO

Parallel File System
maintains logical space and 
provides efficient access to 
data.

Lustre, GPFS, PVFS2, BeeGFS

I/O Forwarding
bridges between application 
tasks and storage system and 
provides aggregation for 
uncoordinated I/O.

IBM CIOD, IOFSL, Cray DVS

High-level I/O Library
maps application abstractions 
onto storage abstractions and 
provides data portability.

HDF5, (p)netCDF, ADIOS

Fig. 2: Parallel I/O architecture [2].

As depicted in Figure 2, parallel I/O systems are inherently
complex, particularly in the context of end-to-end I/O paths.
For example, at the starting point of a typical I/O path,
an application can use a high-level library such as HDF5,
for various reasons including portability and improved data
management. HDF5 is implemented on top of MPI-IO which,
in turn, performs POSIX I/O calls against a parallel file system,
such as Lustre. Furthermore, before an I/O request reaches its
eventual storage device, it may need to traverse through the
compute fabric, and a large-scale storage network fabric.

Hence, providing a comprehensive survey and overview on
large-scale I/O evaluation techniques in the context of HPC is
invaluable due to the ever increasing gap between the compute
and storage performance capabilities. Other surveys such as
Boito et al. [3] present an overview about parallel I/O on HPC
systems and mainly focus on I/O optimization approaches.
Chapp et al. [4] provide an overview of record-and-replay
techniques for HPC systems in the context of debugging,
reproducibility, and fault-tolerance. The most recent survey by
Gupta et al. [5] focuses on open-source tools for I/O monitor-
ing. To the authors’ best knowledge, there has been no holistic
taxonomy or survey presented targeting the complete life cycle
of large-scale I/O performance evaluation and characterization.

III. SURVEY TECHNIQUE

In this article, we have followed different guidelines [6],
[7] for undertaking a brief methodical survey that focuses on
large-scale I/O performance evaluation related research pub-
lished between 2015 and 2020. We identified articles based on
the following process stages: (1) define search keywords, (2)
perform search based on keywords, (3) evaluate articles based
on abstract and conclusion, (4) exclude articles addressing the
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Fig. 3: Percentage distribution of included papers.

same research with common challenge/references, (5) include
remaining articles. In the following, we present the source of
information and selection criteria.

A. Source of Information
We broadly searched for journal, conference, and workshop

research articles in the following databases and search engines:
• IEEE Explore (https://ieeexplore.ieee.org/)
• ACM Digital library (https://dl.acm.org/)
• Springer (https://link.springer.com/)
• ScienceDirect (https://www.sciencedirect.com/)
• Google Scholar (https://scholar.google.com/)

B. Search Criteria and Selection
We defined and used the following keywords for the search

in the aforementioned databases: HPC, large-scale I/O per-
formance evaluation, workload replication and generation,
I/O characterization, workload characterization, I/O analysis,
I/O traces, proxy applications, I/O kernel applications, and
emerging workloads. In the end, we identified 51 research
articles to be included in this overview. Figure 3 presents the
percentage distribution of paper types and publishers.

IV. LARGE-SCALE I/O EVALUATION

This section provides a taxonomy of the iterative process of
large-scale I/O performance evaluation based on its different
phases and strategies, as depicted in Figure 4. The taxonomy is
complemented by a structured survey of existing research work
that has been published between 2015 and 2020. Traditionally,
the process of understanding I/O behavior and performance for
given applications or storage systems is performed iteratively
and empirically in a closed loop fashion. The I/O evaluation
cycle consists of three main phases: (1) Measurements and
Statistics Collection, (2) Modeling and Prediction, and (3)
Simulation. The following sections describe each phase, pro-
vide an overview of existing strategies and tools, and outline
the interplay and feedback loop between the different phases.

A. Measurements and Statistics Collection
The first phase focuses on the performance measurement

and data monitoring either conducted on real-world computing
environments or through simulation. The empirical data is
needed to characterize the I/O behavior of different workloads
and to identify issues; the processing of the obtained data is
typically performed by the modeling and prediction phase.
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Fig. 4: Phases of the iterative large-scale I/O performance evaluation process. Note: The dashed arrows emphasize the iterative
performance analysis cycle and feedback loop between different phases.

1) Workloads: In order to collect I/O performance data, the
first step is to characterize the experiment or workload since
most applications spend a considerable amount of time gath-
ering input or producing output. Multiple different workload
and benchmark strategies can be differentiated:

• Application Code: The most accurate workload is the
application code itself, which cannot always be used or
accessed for characterization purposes. Some applications
are from domain scientists whose codebase cannot be
easily accessed, while others are too huge or take too long
to run to profile their I/O requests on smaller testbeds. In
these cases, the following strategies can be used.

• Benchmarks: There is a variety of synthetic and applica-
tion benchmarks available [8], [9]. Synthetic benchmarks
try to combine operations in proportions that will yield
a representative measure of the actual I/O performance
capabilities by mimicking different file access patterns
while application benchmarks try to mimic the I/O be-
havior of specific applications.

• Metadata Operations: Metadata performance can be a
limiting factor for parallel file systems. Benchmarks
stressing the metadata services such as mdtest [8] provide
a measure to quantify file and directory based operations.

• Workload and I/O Replication: Typically, the I/O eval-
uation is performed in an iterative manner. Results from
previous experiments can be used to replicate and mimic
the I/O behavior of different applications. Proxy applica-
tions [10] are manually derived from large-scale appli-
cation codes and require in-depth understanding and/or
access to the source code. I/O Skeletons [11]–[14] and
auto-generated benchmarks [15] for given applications
are created by utilizing a model of the application de-
rived from the properties of its regular diagnostic and/or
checkpoint output. An example is the tool Skel [14],
which generates I/O skeletons for applications that rely on
ADIOS to describe the data that may need to be written,

read, or processed outside of the running application.
Finally, the Record-and-Replay strategy relies on a set
of lossless and scalable I/O traces or profiles and corre-
sponding replay tools [16]–[19]. Either through dynamic
or static I/O analysis, the collected I/O traces are analyzed
to extract detailed I/O access information and fed back
into replay tools to replicate the I/O behavior of the
original application or generate an often times portable
application benchmark. The ScaleIO Framework [16],
[17], for example, can be used to gather I/O traces on a
small system, to analyze the traces and extrapolate them,
and then finally enable I/O replay to verify the correctness
of the projected extrapolation of the I/O behavior.

• Simulation Frameworks: If researchers do not have
access to a real test system, simulator tools and I/O
workload simulation [13], [20], [21] can be feasible al-
ternatives. Depending on the used simulation framework,
simulations either rely on workload generation based on
I/O traces, I/O characterization or synthetic workloads.
Snyder et al. [20] provide a detailed discussion about
the flexibility, accuracy, and breadth of use of system
simulations based on the different workload sources.

2) Data Monitoring and Collection: Besides the workload
description, information about the actual workload run needs
to be collected in order to characterize the application run
and system utilization for further analysis, modeling, and
prediction. Here, different types of data and metrics can be of
interest. For example, performance metrics such as the time
spent in I/O operations, total execution time of an application,
or read and write throughput can provide insights on the I/O
behavior of an application or storage system.

In principle, there are two ways to collect performance
information: traces and profiles. Profiles store I/O charac-
terization information, i.e., statistics, including: number of
function invocations, average execution time of a function,
file access patterns, or floating-point operations performed.



Darshan [22] and its recent extensions DXT [23] and tf-
Darshan [24] are examples of I/O characterization tools that
may be used to derive representative I/O workloads for a given
application. Unlike profiles, traces record a detailed report of
the execution chronology of function and system calls together
with a timestamp, which produces much more log data and
potentially degrades the system performance while collecting
the traces. For example, Recorder [25], [26] is a multi-level
I/O tracing tool that captures I/O calls at multiple layers of
the I/O stack, and FSMonitor [27], [28] captures the metadata
file system events in storage systems.

In addition to profiles and traces, storage and system system
administrators can collect additional server-side statistics of
the file system, e.g., load on the servers and storage de-
vices [29]. Other valuable insights can be gained through
the collection of client-side hardware statistics and workload
manager logs (e.g., from Slurm or TORQUE), if available.

Several different approaches can be identified to capture the
I/O performance and characterization of a given workload. For
instance, several software implementations of I/O characteriza-
tion [22], [30]–[33] and tracer [15]–[18], [31], [34]–[37] tools
have been proposed to monitor I/O at job-level, which focus
on the I/O behavior of individual applications. In addition,
storage-system-level monitoring tools [38]–[40] have been
proposed to capture the I/O behavior of the storage system
as a whole. Finally, recent work [30], [41]–[46] has proposed
to develop all-encompassing and cohesive monitoring systems
which can capture end-to-end I/O behavior of jobs at each
step along their I/O path.

B. Modeling and Prediction

After the initial measurements and data monitoring phase,
the empirical performance data needs to be analyzed in order
to identify issues, model I/O performance, and predict future
I/O behavior for a given application or the storage system.
Another aspect of this evaluation phase is the workload gener-
ation for further system analysis. The modeling and prediction
phase can be divided in four sub-categories.

1) Statistics and Analysis: The traditional modeling ap-
proach relies on statistics and data analysis and can be
described as the process of extraction of meaningful patterns
in data. In simple words, statistics is the science of collecting,
classifying, and representing numerical data. Here, data refers
to I/O traces, I/O characterization profiles and other logs
such as scheduler logs and server-side statistics. Some of the
statistics techniques are arithmetic mean, standard deviation,
linear regression, Markov models, hypothesis testing, prob-
ability density and cumulative density functions, coefficient
of variance, and coefficient of correlation. However, statistics
needs extensive efforts of human experts with an in-depth
understanding of particular HPC applications or workloads.

When performing a systematic analysis, research studies
of I/O behavior can be broadly classified into two categories:
(1) focus on the I/O behavior of individual applications [11],
[12], [30], [33], [40], [47]–[51], and (2) focus on the I/O
behavior of the storage system as a whole [39], [52]–[54].

Analysis work of type (1) describes the I/O behavior of
specific applications, such as data transfer rates, I/O periodicity
and repetition, and I/O variability of individual jobs. Due to the
shared nature of parallel file systems, the I/O behavior of the
storage system as a whole is another important performance
characteristic. Besides the job-level analysis tools, research
work in this area also relies on server-side logs to identify I/O
patterns and to correlate the monitoring data of job-level logs
with storage-system-level logs. Recent work by Patel et al. [53]
introduces the possibility to gain insights about the storage
systems through temporal, spatial, and correlative analysis.

2) Predictive Analytics: Predictive analytics is a branch of
data analytics to predict future events, but can also be used
to identify performance issues and optimization potential. It
encompasses a variety of statistical techniques from data min-
ing, predictive modeling, and machine learning that analyze
current and historical facts to make predictions about future
or otherwise unknown events. With a sufficient amount of
training data (e.g., from logs or traces), predictive models
can make relatively accurate predictions of the performance,
without requiring domain knowledge and human efforts.

Recent work [55]–[58] introduces I/O performance predic-
tion and I/O behavior emulation based on deep learning,
artificial neural networks, and machine learning. Schmid
and Kunkel [56], for example, use neural networks to analyze
and predict file access times of a Lustre file system from the
client’s perspective, and show that the average prediction error
can be significantly improved in comparison to linear models.
Sun et al. [57] instrument machine learning to automatically
predict the execution and I/O time of MPI applications with
different inputs, at different scales, and without domain knowl-
edge. After collecting data from several automatic executions
with different inputs, a random forest machine learning ap-
proach is used to build an empirical performance model, which
is able to predict the execution and I/O time of the program
for new input parameters.

3) Replay-based Modeling: Replay-based modeling relies
on historical I/O traces or characterization data, which con-
tain detailed information about computation and I/O behavior
of an HPC application. Through the analysis of these traces,
an I/O replication workload can be automatically generated,
which is able to replay the I/O behavior of the original
application, and in turn is also able to predict the application’s
I/O performance. Replay-based models can be used for the
evaluation of different real-world hardware deployments, but
can also be used to generate the workload for storage system
simulations. However, a replay-based application can only
represent the I/O characteristics of one specific application.

Several research studies [15]–[17], [34], [36], [37] have used
replay-based modeling to predict and model HPC workloads.
For instance, Hao et al. [15] propose a framework that can
automatically generate benchmarks for I/O-intensive MPI ap-
plications. The framework takes I/O traces of the original ap-
plication as the input, performs a trace compressing algorithm
based on a suffix tree to reduce the size of traces, and then
generates the C code of the corresponding benchmark.



4) Workload Generation: As previously described, various
methods are available for replicating and mimicking I/O
workloads, including I/O trace replay tools, synthetic and
application benchmarks, synthetic workload generators, proxy
applications, and application I/O skeletons. Each method offers
distinct trade-offs; no technique works best in all scenarios.

I/O workload modeling and generation are major drivers
behind the continuous effort of the collection of performance
measurements and statistics from different storage systems.
At the same time, workload generation plays a crucial part
in storage system simulation, which for example allows
researchers to evaluate new storage system research using
relevant workloads and to directly examine the impact of some
workload on a specific storage system implementation. Three
major sources of workload information can be distinguished:

• I/O Trace Workloads: I/O traces [20], [25], [35] provide
a detailed report regarding each I/O operation issued by a
traced application, including timing information and I/O
parameters. These traces can be used to replicate the exact
I/O pattern of the original application.

• Synthetic I/O Workloads: Synthetic I/O workloads [20],
[21] are manually designed I/O behavior descriptions
used to create desired I/O and access patterns on a storage
system. An example is the CODES I/O language [59],
which allows researchers to model real or artificial I/O
workloads using domain-specific language constructs.

• I/O Characterization Workloads: I/O profiles [20], [22]
provide high-level statistics and capture an accurate pic-
ture of application I/O behavior, including properties such
as access patterns within files, rather than complete traces.

C. Simulation Types and Techniques

Parallel file and storage system simulation is a powerful
tool to examine application I/O behavior without access to
a large-scale testbed. For instance, when a new end-to-end
I/O behavior monitoring and optimization tool needs to be
evaluated, simulation can be especially useful for server-side
components as these cannot be easily tested in production envi-
ronments. Furthermore, in order to analyze or optimize parallel
I/O, different workload generation techniques can be used as
the input for large-scale storage system simulations. Different
simulation types and techniques can be distinguished.

1) (Parallel) Discrete-Event Simulation: Discrete-event
simulation is a stochastic mathematical modeling tool, which
simulates the behavior and performance of a real-life system
as a (discrete) sequence of events in time. Parallel discrete
event simulation refers to the execution of a single discrete
event simulation program on a parallel computer.

To model the workload for discrete-event simulators, I/O
traces, I/O characterization profiles, and synthetic workloads
can be used. Parallel discrete-event simulation has been used
in several works [20], [21], [33], [37]. For instance, Snyder
et al. [20] introduce the IOWA framework, which provides
an I/O workload abstraction based on different I/O workload
generators methods (e.g., Recorder, CODES and Darshan) and

workload consumers (such as storage system simulation and
I/O replay tool). The work provides a detailed discussion on
the different workload generation methods and presents an
innovative technique for synthesizing representative I/O work-
loads from Darshan logs. The CODES simulation framework,
which is used in IOWA, is built atop ROSS [60], a high-
performance parallel discrete-event simulation system.

2) Trace-based Simulation: Trace-based or trace-driven
simulations rely on I/O traces for the workload generation.
Traces provide a time ordered record of function and system
calls for a given application on a real HPC system. Some of
the key advantages of trace-based simulations are the easy
validation (i.e., compare with measured results), the accurate
workload (traces preserve correlation and interference effects),
and less randomness (deterministic input reduces output ran-
domness). However, the traces from one system may not
be representative (i.e., may need another trace if workload
characteristics change) and the simulations can be costly as
they require a high level of detail.

Several research papers have introduced trace-based simu-
lation methodologies [16], [17], [36]. For example, Sangaiah
et al. [36] propose SynchroTrace, a scalable, flexible, and
accurate trace-based multithreaded simulation methodology.

3) Application and Execution-Driven Simulation: The
execution-driven simulation model is similar to trace-driven
simulation except that the application under study and the sim-
ulation are interleaved, i.e., the workload produce and work-
load consume event streams are interleaved and the application
is executed in the simulator. In comparison to trace-based
simulations, execution-driven modeling avoids long traces and
provides a simpler, more flexible way to study new workloads.

Recent work [51], [58], [61] has introduced the execution-
driven model to I/O performance evaluation. For instance,
Obaida et al. [51] present PyPassT, an analysis based modeling
framework built on static program analysis and integrated
simulation of target HPC architectures. The prediction frame-
work takes application model and launches it on Performance
Prediction Toolkit (PPT) with desired model parameters.
During the program execution in the simulation framework,
performance counters can be collected which may be used for
profiling and further analysis.

V. EMERGING HPC WORKLOADS

HPC is no longer solely limited to traditional simulation
and modeling workloads. A recent I/O behavior analysis of
a year’s worth of I/O activity at NESRC [53] has revealed
that HPC storage systems may no longer be dominated by
write I/O – challenging the long- and widely-held belief that
HPC workloads are write-intensive. Emerging HPC workloads
now also encompass advanced and big data analytics, machine
learning, deep learning, and data-intensive workflows.

A. Advanced Data Analytics and Machine Learning

Emerging HPC workloads are driven by machine learning
(ML) and other data analytical techniques that rely on frame-
works, such as Apache Spark [62], analytics and ML packages,



for example, Pytorch [63] and TensorFlow [64], and domain-
specific libraries that traditionally have not been used in HPC.
These workloads exhibit largely different kinds of I/O patterns
than the traditional simulation based workloads [65], and as
a result perform poorly on HPC systems which need to adapt
to the changing scenario of HPC workloads [66].

Continuity and reliability of storage resources is extremely
important for emerging workloads that are associated with
observational and experimental facilities, for example, the
Center for Electron Microscopy [67], and the Advanced
Photon Source [68] generating large volumes of data. These
facilities currently generate hundreds of megabytes of data
per second but are projected to generate tens to hundreds of
gigabytes of data per second in the future.

B. Distributed Deep Learning
Recently, deep neural networks (DNNs) have gained

tremendous interest due to their potential for solving complex
problems, like image recognition, natural languages process-
ing, and autonomous vehicles. With the growth of computation
power of processors and accelerators, such as on leadership-
class HPC systems, larger datasets can be trained more ef-
ficiently with DNNs. However, there need to be efforts on
improving I/O support for DNNs to match the increasing
computation power. Deep learning (DL) frameworks, such as
TensorFlow [64], MXNet [69], and LBANN [70], invoke file
read requests to the HPC parallel file systems and form mini-
batches of data required for successful training. This is in
contrast to the traditional well-structured HPC I/O pattern (for
example, checkpoint/restart, multi-dimensional I/O access), as
the DL training phase gives rise to highly random small file
accesses [71]. The requirement of randomly shuffled input
imposes significant pressure to parallel file systems, which are
typically designed and optimized for large sequential I/O.

C. Data-Intensive Scientific Workflows
The science drivers for HPC are broadening with the

proliferation of high-resolution observational instruments and
emergence of completely new data-intensive scientific domains
as described above. Scientific workflows [72] that chain the
processing and data are becoming critical to manage these
on HPC systems. Thus, while providers of HPC resources
must continue to support the extreme bandwidth requirements
of traditional HPC workloads, centers must now also deploy
resources that are capable of supporting the requirements of
these emerging data-intensive workflows. In sharp contrast to
the traditional highly coherent, sequential, large-transaction
reads and writes, data-intensive workflows have been shown
to often utilize non-sequential, metadata-intensive, and small-
transaction reads and writes [73]. Therefore, the rapid growth
in I/O demands coming from data-intensive workflows are
demanding new performance and optimization requirements
of future HPC I/O subsystems [74].

VI. KEY FINDINGS AND RESEARCH CHALLENGES

Emerging HPC workloads such as artificial intelligence, big
data analytics and complex multi-step workflows alongside

future exascale applications [75] are anticipated workloads,
which will result in a more diverse system-wide workload
and even less predictable I/O behavior and access patterns.
Preliminary research [24], [43], [48], [56], [58] has shown
that I/O evaluation techniques can be significantly improved
through the adaption of new techniques such as machine
learning algorithms for I/O pattern prediction of complex,
hybrid application workloads. The key findings and research
challenges can be summarized as follows:

• New open-source benchmarks and in-depth I/O char-
acterization are needed to evaluate emerging hybrid
HPC systems workloads. The majority of the exam-
ined research still relies on synthetic benchmarks such
as IOR [76], NPB [77], and HACC-IO [78] or write-
intensive, bursty workloads for the evaluation and valida-
tion of novel parallel I/O optimization techniques. Only a
few case studies exist for emerging workloads [48], [58],
[79]. Recent work by Devarajan et al. [80] provides a
promising start with the proposal of DLIO, a data-centric
benchmark for scientific deep learning applications.

• I/O profiling and characterization tools still lack
the ability to capture and analyze emerging HPC
workloads. Parallel file systems in today’s supercom-
puters have been optimized for more traditional HPC
workloads, while state-of-the-art performance analysis
tools have mainly focused on traditional interfaces such as
POSIX I/O, MPI-IO and HDF5. Current I/O tracers and
profiling tools lack the means to understand fine-grained
I/O performance. In future work, it is essential to develop
methods to quantitatively characterize the I/O needs of
emerging workloads such as data-intensive workflows to
ensure that the design of future HPC I/O subsystems and
storage paradigms can address the rapid growth in I/O
demand, but also that resources can be deployed with
the correct balance of performance characteristics. Chien
et al. have recently introduced tf-Darshan [24], which
enables profiling and tracing of I/O operations in ML
workloads using the TensorFlow framework.

• A better understanding of available simulation frame-
works and workload generators is needed. Most re-
search relies on the simulation or emulation of large-
scale storage systems, which makes it more difficult to
generate a representative HPC workload behavior. While
simulation frameworks such as CODES [59] provide
a promising way for researchers to simulate emerging
workloads, leveraging the full potential requires the man-
ual design of the I/O behavior description to create the
desired I/O and access patterns. This not only intensifies
the need for a better understanding of the I/O behavior
of emerging HPC workloads, but also the demand for
new open-access workload generators or the access to
updated I/O traces or characterization datasets that rep-
resent the changing landscape of emerging workloads.
Finally, standardized workload generation approaches as
proposed for example by Snyder et al. [20] will help in



synthesizing representative I/O workloads from I/O traces
and characterization logs. However, such techniques are
rarely adopted by recent research.

VII. CONCLUSION

This survey presents a snapshot of the current I/O behavior
and performance analysis landscape and identifies areas that
require future research. Parallel I/O remains an important topic
in the HPC community, motivated by the ever-increasing gap
between processing power and storage (i.e., I/O) capabilities
and intensified by the emergence of complex hybrid HPC
workloads that challenge the long- and widely-held belief that
HPC workloads are primarily write-intensive.

More comprehensive and open source workload generation
tools will be needed to drive the behavior analysis, modeling,
and prediction of future extreme-scale parallel I/O. Further-
more, training events for both storage researchers and domain
scientists will help broaden the understanding of available
tools and complexities of the parallel I/O stack.
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[37] F. Azevedo, D. Klusáček, and F. Suter, “Improving Fairness in a Large
Scale HTC System Through Workload Analysis and Simulation,” in
Euro-Par 2019: Parallel Processing (R. Yahyapour, ed.), pp. 129–141,
Springer International Publishing, 2019.

[38] J. M. Kunkel, E. Betke, M. Bryson, P. Carns, R. Francis, W. Frings,
R. Laifer, and S. Mendez, “Tools for Analyzing Parallel I/O,” in High
Performance Computing (R. Yokota, M. Weiland, J. Shalf, and S. Alam,
eds.), (Cham), pp. 49–70, Springer International Publishing, 2018.

[39] S. S. Vazhkudai, R. Miller, D. Tiwari, C. Zimmer, F. Wang, S. Oral,
R. Gunasekaran, and D. Steinert, “GUIDE: A Scalable Information
Directory Service to Collect, Federate, and Analyze Logs for Operational
Insights into a Leadership HPC Facility,” SC ’17, (New York, NY, USA),
Association for Computing Machinery, 2017.

[40] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 750–759, 2016.

[41] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, “LOGAIDER:
A Tool for Mining Potential Correlations of HPC Log Events,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp. 442–451, 2017.

[42] G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown, and
K. Harms, “TOKIO on ClusterStor: Connecting Standard Tools to
Enable Holistic I/O Performance Analysis,” 2018 Cray User Group
Conference (CUG), 1 2018.

[43] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann, “Big
Data Meets HPC Log Analytics: Scalable Approach to Understanding
Systems at Extreme Scale,” in 2017 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 758–765, 2017.

[44] G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms,
Z. Nault, and P. Carns, “UMAMI: A Recipe for Generating Meaningful
Metrics through Holistic I/O Performance Analysis,” in Proceedings of
the 2nd Joint International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, PDSW-DISCS ’17, (New York,
NY, USA), p. 55–60, Association for Computing Machinery, 2017.

[45] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan,
Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end I/O Monitoring on
a Leading Supercomputer,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), (Boston, MA), pp. 379–
394, USENIX Association, Feb. 2019.

[46] B. Wadhwa, A. K. Paul, S. Neuwirth, F. Wang, S. Oral, A. R. Butt,
J. Bernard, and K. W. Cameron, “iez: Resource Contention Aware
Load Balancing for Large-Scale Parallel File Systems,” in 2019 IEEE

International Parallel and Distributed Processing Symposium (IPDPS),
pp. 610–620, 2019.

[47] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A year in the life of a parallel file system,” in SC18: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 931–943, 2018.
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